
12th International Workshop on
Higher-Order Rewriting (HOR 2025)

Pablo Barenbaum (editor)

14th July 2025, Birmingham, United Kingdom

Preface

This report contains the informal proceedings of the 12th International Workshop on Higher-

Order Rewriting (HOR 2025), to be held on 14th July 2025, Birmingham, United Kingdom:

https://hor2025.github.io/

HOR 2025 is affiliated with the 10th International Conference on Formal Structures for Compu-

tation and Deduction (FSCD 2025).

HOR is a forum to present work concerning all aspects of higher-order rewriting. The aim

is to provide an informal and friendly setting to discuss recent work and work in progress. The

following is a non-exhaustive list of topics for the workshop:

• Applications: proof checking, theorem proving, generic programming, declarative pro-

gramming, program transformation, automated termination/confluence/equivalence anal-

ysis tools.

• Foundations: pattern matching, unification, strategies, narrowing, termination, syntactic

properties, type theory, complexity of derivations.

• Frameworks: term rewriting, conditional rewriting, graph rewriting, net rewriting, com-

parisons of different frameworks.

• Implementation: explicit substitution, rewriting tools, compilation techniques.

• Semantics: semantics of higher-order rewriting, categorical rewriting, higher-order ab-

stract syntax, games and rewriting

• Computing paradigms: lambda-calculi, higher-order logic programming, quantum pro-

gramming languages, process calculi.

Information about previous editions can be found at https://hor.irif.fr/.

The 12th Workshop on Higher-Order Rewriting features six extended abstracts, contained in

this volume, and three invited talks:

1. Théo Winterhalter (INRIA Saclay, France). Controlling computation in type theory.

2. Vincent van Oostrom (University of Sussex, United Kingdom). Accounting for the cost of

substitution in structured rewriting

3. Damiano Mazza (CNRS, LIPN, Université Sorbonne Paris Nord, France). Revisiting Honda

and Laurent’s Correspondence between the Pi-Calculus and Linear Logic

HOR is possible thanks to the effort of the participants, the programme commitee, the steering

committee, and the local organisers. I would like to thank all the people involved in preparing

and running the workshop.

Birmingham, July 2025 Pablo Barenbaum

https://hor2025.github.io/
https://hor.irif.fr/

Programme Committee

Zena Ariola University of Oregon, United States

Thibaut Balabonski Université Paris-Saclay, France

Pablo Barenbaum (chair) UNQ (CONICET) & UBA, Argentina

Ma lgorzata Biernacka University of Wroclaw, Poland

Willem Heijltjes University of Bath, United Kingdom

Johannes Waldmann HTWK Leipzig, Germany

Steering Committee

Delia Kesner Université Paris Cité, France

Femke van Raamsdonk Vrije Universiteit Amsterdam, The Netherlands

Table of Contents

Higher-order inductive theorems via recursor templates .1

Kasper Hagens and Cynthia Kop

Basis-Sensitive Quantum Typing via Realizability . 9

Alejandro Dı́az-Caro, Octavio Malherbe and Rafael Romero

Compression for Coinductive Infinitary Rewriting (A Preliminary Account) 15

Rémy Cerda and Alexis Saurin

Constructing a Curry Algebra where Indeterminates are not Left Cancellative 21

Enno Folkerts

Proving Termination With CPO . 27

Alejandro Diaz-Caro, Gilles Dowek and Jean-Pierre Jouannaud

Towards the type safety of Pure Subtype Systems . 35

Valentin Pasquale and Álvaro Garćıa-Pérez

Higher-order inductive theorems via recursor templates

K. Hagens1 and C. Kop2

1 Radboud University, Nijmegen, Netherlands
kasper.hagens@ru.nl

2 Radboud University, Nijmegen, Netherlands
c.kop@cs.ru.nl

Abstract

Rewriting Induction (RI) is a formal system in term rewriting for proving inductive
theorems. Recently, RI has been extended to higher-order Logically Constrained Term
Rewriting Systems (LCSTRSs), which makes it an interesting tool for program verification
with inductive theorems as an interpretation for program equivalence. A major challenge
when proving inductive theorems with RI is the generation of suitable induction hypothesis,
preferably automatically. Two existing heuristics often fail. Here, we consider another
approach: rather than inventing new heuristics for proving individual cases, we consider
classes of equivalences. This is achieved by introducing templates, describing specific tail
and non-tail recursive programs. Whenever each of the two programs fit into such a
template we can generate an equation which is guaranteed to be an inductive theorem.

1 Introduction

Rewriting Induction (RI) is a method for inductive theorem proving. Recently, it was extended
to higher-order Logically Constrained Term Rewriting Systems (LCSTRSs) [5], making it an
interesting tool for program verification with inductive theorems as interpretation for program
equivalence. The RI proof system is based on well-founded induction, and proving an equation
often requires to introduce another equation, to be used as induction hypothesis. Finding such
an induction hypothesis is known to be a non-trivial problem, and the two existing generalization
methods for RI do not always succeed.

Inspired by [1], we consider another approach: rather than inventing new heuristics for
proving the equivalence of individual program pairs, we consider classes of equivalences. We
introduce tail and non-tail recursors, specifically aimed at describing simple bounded loop
constructions, governed by some binary integer operator. We then introduce templates for
describing specific tail and non-tail recursive programs. Whenever each of the two programs fit
into a template we can generate an equation which is guaranteed to be an inductive theorem.

Induction proofs with RI Figure 1 shows four implementations of the factorial function:
Tail recursive Upward (TU), Tail recursive Downward (TD), Recursive Upward (RU) and Re-
cursive Downward (RD). Figure 2 shows their LCSTRS representation. Provided x ≥ 1, they
all compute x 7→ ∏x

i=1 i. We aim to prove all
(
4
2

)
= 6 program-pairs being equivalent. In

the setting of LCSTRSs the equivalence of, for example, factTU x and factRU x for x ≥ 1 is
expressed by the equation factTU x ≈ factRU x [x ≥ 1].

With RI we then prove that this equation is an inductive theorem, meaning that for every
ground substitution γ that satisfies [[(x ≥ 1)γ]] = ⊤ we have (factTU x)γ ↔∗

R (factRU x)γ.
Here, ↔∗

R is the transitive, reflexive closure of →R ∪ ←R, with →R the rewrite relation
generated by R (and R the set of all rules involved in the definition of factTU and factRU).

A pleasant property of constrained rewriting is that it incorporates primitive data structures
(such as the integers) non-inductively. This in turn is beneficial when it comes to inductive

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

int factTU(int x){

int a = 1; int i = 1;

while (i<=x){

a = i*a; i = i+1;}

return a; }

(a) Tail recursive Upward

int factTD(int x){

int a = 1;

while (x>0){

a = a*x; x = x-1;}

return a; }

(b) Tail recursive Downward

int factRD(int x){

if (x > 1)

return(x*factRD(x-1));

else

return 1; }

(c) Recursive Downward

int factRU(int x) = R(1, x);

int R(int i, int x){

if (i<x)

return(i*R(i+1, x));

else

return x; }

(d) Recursive Upward

Figure 1: Four equivalent implementations of x 7→∏x
i=1 i.

factTU x→ u x 1 1

u x i a→ a [i > x]

u x i a→ u x (i+ 1) (i ∗ a) [i ≤ x]

(a) Tail recursive Upward

factTD x→ d x 1

d x a→ a [x ≤ 0]

d x a→ d (x− 1) (a ∗ x) [x > 0]

(b) Tail recursive Downward

factRD x→ 1 [x ≤ 1]

factRD x→ x ∗ (factRD (x− 1)) [x > 1]

(c) Recursive Downward

factRU x→ R 1 x

R i x→ x [i > x− 1]

R i x→ i ∗ (R (i+ 1) x) [i ≤ x− 1]

(d) Recursive Upward

Figure 2: The LCTRS representations of the programs in Figure 1.

theorem proving, as it allows us to more directly deal with the program definition itself, in-
stead of getting involved in complicated interactions with underlying recursively defined data
structures. As we will see below: when working with integer programs we can use polynomials
over Z to express invariants that we need to generate an induction hypothesis (and we can use
computer algebra systems to find such polynomials [4]).

We briefly try to give some intuition for the role of generalization during the generation of
induction hypotheses in RI proofs, and why this is easier for some equivalences than for others.

Typically, the two existing generalization methods (InGen [2] and matrix invariants [4])
perform well when comparing a tail recursive implementation with a recursive implementation.
The corresponding RI proof is usually generated in two stages, which we will illustrate below
for the equivalence factTU x ≈ factRD x.

Stage 1: Eliminating recursive term. The proof of factTU x ≈ factRD x generates an
induction hypothesis u x 1 1 ≈ factRD x, which is applied later in the proof process to
transform the equation u x 3 2 ≈ x ∗ (factRD x1) [x ≥ 2 ∧ x1 = x − 1] into u x 3 2 ≈
x ∗ (u x 1 1) [x ≥ 2 ∧ x1 = x − 1]. This stage did not require any generalization because
u x 1 1 ≈ factRD x was automatically obtained as a proof goal during the RI process, and
RI always allows us to save a proof goal as an induction hypothesis.

Stage 2: Divergence solving. After eliminating the recursive term, the proof starts to

2

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

diverge into an infinite repeating process, each time producing a new proof obligation that
we are not able to remove. We only show the first three:

u x 3 2 ≈ x ∗ u x1 2 1 [x ≥ 2 ∧ x1 = x− 1]

u x 4 6 ≈ x ∗ u x1 3 2 [x ≥ 3 ∧ x1 = x− 1]

u x 5 24 ≈ x ∗ u x1 4 6 [x ≥ 4 ∧ x1 = x− 1]

None of these equations can be saved as induction hypothesis to remove the succeeding
equation. Fortunately, both generalization methods are able to generate an induction
hypothesis u x i a ≈ x ∗ u x1 i1 a1 [i1 = i− 1 ∧ x ≥ i1 ∧ x1 = x− 1 ∧ a = a1 ∗ i1].

There is, however, no guarantee that comparing a tail recursive with a recursive will always
lead to such a procedure. For example, when trying to prove factTU x ≈ factRU x [x ≥ 1] we
are not able to eliminate the recursive term and immediately run into the divergence shown
in Figure 3a. The repeated unfolding of the recursive call R i x → i ∗ (R (i + 1) x) makes

u x 2 1 ≈ R 1 x [x ≥ 1]

u x 3 2 ≈ 1 ∗ (R 2 x) [x ≥ 2]

u x 4 6 ≈ 1 ∗ (2 ∗ (R 3 x)) [x ≥ 3]

u x 5 24 ≈ 1 ∗ (2 ∗ (3 ∗ (R 4 x))) [x ≥ 4]

(a) Original divergence

u x 2 1 ≈ R 1 x [x ≥ 1]

u x 3 2 ≈ 1 ∗ (R 2 x) [x ≥ 2]

u x 4 6 ≈ 2 ∗ (R 3 x) [x ≥ 3]

u x 5 24 ≈ 6 ∗ (R 4 x) [x ≥ 4]

(b) Processed divergence

Figure 3: Divergence of factTU x ≈ factRU x [x ≥ 1]

it difficult to handle by both generalization methods, as it leads to a divergence where each
equation has a different term shape. Once we turn the divergence into the shape shown in
Figure 3b we can apply the matrix invariants method to generate an induction hypothesis
u x i z ≈ a ∗ (R j x) [z = a ∗ j ∧ i = j + 1 ∧ j ≤ x]. InGen is not capable of producing this
induction hypothesis because it is not able to find the crucial invariant z = a ∗ j.

For factRU x ≈ factTD x [x ≥ 1] the situation is worse. We obtain a divergence

d i1 a1 ≈ R 1 x [i1 = x− 1 ∧ a1 = x ∧ x ≥ 1]

d i2 a2 ≈ 1 ∗ (R 2 x) [i2 = x− 2 ∧ a2 = x ∗ (x− 1) ∧ x ≥ 2]

d i3 a3 ≈ 1 ∗ (2 ∗ (R 3 x)) [i3 = x− 3 ∧ a3 = x ∗ (x− 1) ∗ (x− 2) ∧ x ≥ 3]

This time, we cannot find an induction hypothesis of the shape d i a ≈ a ∗ (R j x) [φ], where φ
only contains polynomial arithmetical expressions (we can find an invariant i+ j = x but this
is not sufficient to obtain an induction hypothesis). We are not able to prove this equation.

For factRU x ≈ factRD x [x ≥ 1] and factTU x ≈ factTD x we encounter similar problems:
the invariants that we can find are not sufficient to generate induction hypothesis.

Recursor templates In section 2 we will introduce recursor templates for LCSTRSs. This
allows us to circumvent the need for executing explicit RI proofs, which as we just motivated
can be quite cumbersome due to the need of finding induction hypotheses. The dirty work only
needs to be done once, when proving the correctness of our templates and the corresponding
inductive theorems. After this, we can check whether a specific example can be matched with
a template and automatically generate a corresponding inductive theorem.

We will show that we can prove all 6 inductive theorems from Figure 2 with recursor tem-
plates. In addition, we will show we can handle higher-order examples as well.

3

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

1.1 Prerequisites

LCSTRSs [3] are a higher-order rewriting formalism with built-in support for integers and
booleans (or in fact any arbitrary theory such as bitvectors, floating point numbers or integer
arrays) as well as logical constraints to model control flow. This considers applicative higher-
order term rewriting (without λ abstractions) and first-order constraints. We will introduce
the minimal necessary prerequisites.

We assume a set of sorts (base types) S; the set T of types is defined by T ::= S | T → T .
Here, → is right-associative. Assume a subset Stheory ⊆ S of theory sorts (e.g., int and bool),
and define the theory types by Ttheory ::= Stheory | Stheory → Ttheory. Every ι ∈ Stheory
corresponds to a non-empty interpretation set Iι. Here, we will use theory sorts bool and int,
with Ibool = {⊤,⊥} and Iint = Z (the set of all integers).

We assume a signature Σ of function symbols and a disjoint set V of variables, and a function
typeof from Σ∪ V to T . The set of terms T (Σ,V) over Σ and V are the well-typed expressions
in T, defined by T ::= Σ | V | T T. For a term t, let V ar(t) be the set of variables in t. A
term t is ground if V ar(t) = ∅. We assume that Σ is the disjoint union Σtheory ⊎Σterms, where
typeof (f) ∈ Ttheory for all f ∈ Σtheory.

Each f ∈ Σtheory has an interpretation [[f]] ∈ Itypeof (f). Here, we will fix Σtheory = {+,−, ∗}∪
{<,≤, >,≥,=,∧,∨,¬}∪{true, false}∪{n | n ∈ Z}, where each of these symbols is typed and
interpreted as expected (e.g. ∗ :: int→ int→ int is interpreted as multiplication on Z). We use
[f] for prefix or partially applied notation (e.g., [+] x y and x + y are the same). Symbols in
Σterms (such as factRD :: int → int) do not have an interpretation since their behavior will be
defined through the rewriting system.

Values are theory symbols of base type, i.e. Val = {v ∈ Σtheory | typeof (v) ∈ Stheory},
which in our setting are true, false and all n. Elements of T (Σtheory,V) are theory terms. A
constraint is a theory term φ :: bool, such that typeof (x) ∈ Stheory for all x ∈ V ar(φ). For
example, we have theory terms x + 3, true and 7 ∗ 0. The latter two are ground. We have
[[7 ∗ 0]] = 0. An example of a constraint is x ∗ y > 0.

A rewrite rule is an expression ℓ → r [φ] with typeof (ℓ) = typeof (r), ℓ = f ℓ1 · · · ℓk with
f ∈ Σ and k ≥ 0, φ a constraint and V ar(r) ⊆ V ar(ℓ) ∪ V ar(φ). If φ = true, we write ℓ→ r.
We assume familiarity with contexts and substitutions. A substitution γ respects constraint φ
if γ(V ar(φ)) ⊆ Val and [[φγ]] = ⊤. We define Rcalc = {f x1 · · ·xm → y [y = f x1 · · ·xm] | f ∈
Σtheory \ Val, typeof (f) = ι1 → . . .→ ιm → κ}. The reduction relation →R is defined by:

C[lγ]→R C[rγ] if ℓ→ r [φ] ∈ R ∪Rcalc and γ respects φ

For example, we have a reduction factRD 2→R 2∗(factRD (2−1))
Rcalc−−−→ 2∗(factRD 1)→R

2 ∗ 1 Rcalc−−−→ 2. An equation is a triple s ≈ t [φ] with typeof (s) = typeof (t) and φ a constraint.
A substitution γ respects s ≈ t [φ] if γ respects φ and V ar(s)∪V ar(t) ⊆ dom(γ). An equation
s ≈ t [φ] is an inductive theorem if sγ ↔∗

R tγ for every ground substitution γ that respects it.
Here ↔R = →R ∪ ←R, and ↔∗

R is its transitive, reflexive closure.
RI is a deduction system on proof states, which are pairs of the shape (E ,H). Intuitively,

E is a set of equations, describing all proof goals, and H is the set of induction hypotheses
that have been assumed. At the start E consists of all equations that we want to prove to
be inductive theorems, and H = ∅. With a deduction rule we may transform a proof state
(E ,H) into another proof state (E ′,H′). This is denoted as (E ,H) ⊢ (E ′,H′). We write ⊢∗
for the reflexive, transitive closure of ⊢. If a RI deduction removes every proof goal in E then
E only contains inductive theorems. This is expressed the following soudness principle: “If
(E ,H) ⊢∗ (∅,H) for some set H, then every equation in E is an inductive theorem”.

4

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

Template Inductive theorem
Cx,y[i, a]→ a [i > y]

Cx,y[i, a]→ Cx,y[i+ 1, f i a] [i ≤ y]

Cx,y[i, a] ≈ tailup f i x y a

[x ≤ i ≤ y]
Cx,y[i, a]→ a [i < x]

Cx,y[i, a]→ Cx,y[i− 1, f a i] [i ≥ x]

Cx,y[i, a] ≈ taildown f i x y a

[x ≤ i ≤ y]
Cx,y[i]→ D[i] [i > y]

Cx,y[i]→ f i Cx,y[i+ 1] [i ≤ y]

Cx,y[i] ≈ recup f i x y D[z]

[x ≤ i ≤ y ∧ z = y + 1]
Cx,y[i]→ D[i] [i < x]

Cx,y[i]→ f i Cx,y[i− 1] [i ≥ x]

Cx,y[i] ≈ recdown f i x y D[z]

[x ≤ i ≤ y ∧ z = x− 1]

Table 1: Recursor templates and corresponding inductive theorems

2 Recursor templates

We define recursors of type (int→ int→ int)→ int→ int→ int→ int→ int as follows

tailup f i x y a→ tailup f (i+ 1) x y (f i a) [x ≤ i ≤ y]

taildown f i x y a→ taildown f (i− 1) x y (f a i) [x ≤ i ≤ y]

recup f i x y a→ f i (recup f (i+ 1) x y a) [x ≤ i ≤ y]

recdown f i x y a→ f i (recdown f (i− 1) x y a) [x ≤ i ≤ y]

We furthermore define F f i x y a→ a [i < x ∨ i > y] for all F ∈ {tailup, taildown, recup, recdown}.
What these recursors have in common is that in each call the iterator i is increased/de-

creased by 1 (executing its recursive call) until it surpasses the lower bound x or upperbound y
(returning accumulator a). The same can be said about the examples in Figure 2. For example,
Figure 2c is equivalent to R = {factRD i→ 1 [i < 2], factRD i→ i ∗ (factRD (i− 1)) [i ≥ 2]},
satisfying this behavior (except that here, we have lower bound x = 2 but no upper bound y).

Let us consider downward recursion more abstractly, using the following template consisting
of two rewrite rules (Figure 2c fits in by taking Cx,y[i] = recdown i, f = ∗, D[i] = 1, x = 2).

{
Cx,y[i]→ D[i] [i < x]

Cx,y[i]→ f i Cx,y[i− 1] [i ≥ x]

With RI we can prove that this template corresponds to the inductive theorem Cx,y[i] ≈
recdown f i x y D[z] [x ≤ i ≤ y ∧ z = x − 1]. For Figure 2c this yields factRD i ≈
recdown [∗] i 2 y 1 [2 ≤ i ≤ y]. The absence of an upper bound in the definition of factRD is
reflected by the corresponding inductive theorem: variable y occurs only on the right-hand side
and in the constraint. We can freely choose any y which satisfies i ≤ y.

Table 1 summarizes the templates and corresponding inductive theorems for all the 4 types
of recursion that we will consider.

Example 2.1. By renaming x := y in Figure 2a we obtain the equivalent LCSTRS with rules
factTU y → u y 1 1, u y i a→ a [i > y], u y i a→ u y (i+ 1) (i ∗ a) [i ≤ y]. The u-rules fit into
the tailup template of Table 1 (take f = ∗ and Cx,y[i, a] = u y i a). This yields an inductive
theorem u y i a ≈ tailup [∗] i x y a [x ≤ i ≤ y]. Since factTU y →R u y 1 1, we obtain the
inductive theorem factTU y ≈ tailup [∗] 1 x y 1 [x ≤ 1 ≤ y].

5

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

3 Proving inductive theorems with recursor templates

With Table 1 we can automatically generate inductive theorems, relating program definitions
to one of the pre-defined recursors tailup, taildown, recup and recdown. To conclude program
equivalence we in addition need to derive inductive theorems between the recursors themselves.

Lemma 3.1. recdown f y x n a ≈ tailup f x m y a [m ≤ x ≤ y ≤ n] is an inductive theorem.

This lemma is easily proven with RI.

Example 3.1. Variable-renaming the inductive theorem from Example 2.1 yields factTU i ≈
tailup [∗] 1 x i 1 [x ≤ 1 ≤ i]. We also deduced factRD i ≈ recdown [∗] i 2 y 1 [2 ≤ i ≤ y].
Moreover, we easily prove the ∗-specific equation recdown [∗] i 2 y a ≈ recdown [∗] i 1 y a, which
gives us

factTU i ≈ tailup [∗] 1 x i 1 [x ≤ 1 ≤ i]
factRD i ≈ recdown [∗] i 1 y 1 [2 ≤ i ≤ y]

fitting into Lemma 3.1 by substituting [x := 1, m := x, y := i, a := 1, n := y]. We obtain
factTU i ≈ factRD i [x ≤ 1 ≤ 2 ≤ i ≤ y], or equivalently factTU i ≈ factRD i [i ≥ 2].

The remaining recursor equivalences we can only prove conditionally: under assumption
f = f ∈ Σ satisfies extra properties (here, we need commutativity/associativity). We collect
our assumptions in a set A of axioms, required to be proven by a RI deduction (A, ∅) ⊢∗ (∅,H).

Definition 3.1 (Conditional inductive theorems). Let A be a set of equations (axioms) and E
be a set of equations. We define the conditional inductive theorem A c⊢E as follows: “If there is
a set H and a RI-deduction (A, ∅) ⊢∗ (∅,H) then every equation in E is an inductive theorem.”

For f :: int → int → int ∈ Σ, we define axiom sets C(f) = {f x y ≈ f y x} and AC(f) =
{f x (f y z) ≈ f (f x y) z, f x y ≈ f y x}.
Lemma 3.2. Let f :: int→ int→ int ∈ Σ. The following are conditional inductive theorems

AC(f) c⊢ recdown f y x n a ≈ recup f x m y a [m ≤ x ∧ x ≤ y ∧ y ≤ n]

AC(f) c⊢ taildown f y x n a ≈ tailup f x m y a [m ≤ x ∧ x ≤ y ∧ y ≤ n]

C(f) c⊢ taildown f y x n a ≈ recup f x m y a [m ≤ x ∧ x ≤ y ∧ y ≤ n]

AC(f) c⊢ taildown f i x y a ≈ recdown f i x y a

AC(f) c⊢ tailup f i x y a ≈ recup f i x y a

With RI we easily show (AC(∗), ∅) ⊢∗ (∅,H) for H = ∅. Using Lemma 3.2 we derive the
remaining inductive theorems in Figure 2, such as factTD x ≈ factTU x [x ≥ 1].

Higher-order equivalences With Lemma 3.1, 3.2 we prove all equivalences from Figure 1.
For higher-order equivalences, however, they no longer suffice. Consider the following higher-
order variants of the LCSTRSs in Figure 2a and Figure 2b, both computing (f, x) 7→∏x

i=1 f(i)

funfactTU f y → u f y 1 1 funfactTD f i→ d f i 1

u f y i a→ a [i > y] d f i a→ a [i < 1]

u f y i a→ u f y (i+ 1) ((f i) ∗ a) [i ≤ y] d f i a→ d f (i− 1) (a ∗ (f i)) [i ≥ 1]

By Table 1 we obtain funfactTD f i ≈ taildown (λa, i.(f i) ∗ a) i 1 y 1 [1 ≤ i ≤ y] and
funfactTU f y ≈ tailup (λi, a.(f i) ∗ a) 1 x y 1 [x ≤ 1 ≤ y]. Here, λ is used as meta-language

6

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

notation. For example, λa, i.(f i) ∗ a denotes a function symbol Gf ∈ Σ defined by Gf a i →
(f i)∗a. Note that Lemma 3.2 does not apply: we do not even have λa, i.(f i)∗a = λi, a.(f i)∗a.

However, we can prove the equivalence once we have the following result

Lemma 3.3. Let F :: int→ int→ int ∈ Σ. The following are conditional inductive theorems
AC(F) c⊢ recdown (λi, a. (F (f i) a)) y x n a ≈ recup (λi, a. (F (f i) a)) x m y a [m ≤ x ≤ y ≤ n]

AC(F) c⊢ taildown (λa, i. (F (f i) a)) y x n a ≈ tailup (λi, a. (F (f i) a)) x m y a [m ≤ x ≤ y ≤ n]

AC(F) c⊢ taildown (λa, i. (F (f i) a)) i x y a ≈ recdown (λi, a. (F (f i) a)) i x y a

AC(F) c⊢ tailup (λi, a. (F (f i) a)) i x y a ≈ recup (λi, a. (F (f i) a)) i x y a

∅ c⊢ taildown (λa, i. (F (f i) a)) y x n a ≈ recup (λi, a. (F (f i) a)) x m y a [m ≤ x ≤ y ≤ n]

4 Closing remarks

Constrained rewriting The facility for non-inductively defined primitive data structures
is very specific to constrained rewriting. This made it possible to define recursors and tem-
plates being able to describe integer loops in a manner that is intuitively very close to real-life
programming (where we can also treat the integers as being given for free). The templates
defined here, we cannot define in ordinary higher-order rewriting. We specifically aimed at
loop constructions having an integer counter i which is increased/decreased by 1 in each loop
iteration. In future work we can further extend our existing templates or add new ones, e.g.
generalizing our templates to increases/decreases by some arbitrary number k. We could also
introduce recursors that iterate over lists, obtaining foldl and foldr. However, such recursors we
can already define in ordinary higher-order rewriting.

Related & future work The idea to use templates for inductive theorem proving is not
new. A comparable work for unconstrained first-order rewriting is [1], where the authors define
templates to verify program transformations. In contrast to our approach, equivalence between
templates is proven directly (i.e. no intermediate recursors like tailup are used) using the notion
equivalent term rewriting systems (instead of using RI), which they can prove with specifi-
cally designed transformation rules. It seems that the underlying mechanism is fundamentally
different, because their method assumes confluence (whereas RI relies on termination).

In future work we could investigate if we could benefit from this and other existing work on
program transformations based on term rewriting, such as context moving transformations [6].

Implementation We recently implemented RI for LCSTRSs [5] in Cora (see https://

github.com/hezzel/cora), and we are currently working on implementing the template
method as well.

7

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

References

[1] Y. Chiba, T. Aoto, and Y. Toyama. Program transformation templates for tupling based on term
rewriting. IEICE TRANSACTIONS on Information and Systems, E93-D(5):963–973, 2010.

[2] C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting induction.
ACM Transactions On Computational Logic (TOCL), 18(2):14:1–14:50, 2017.

[3] L. Guo and C. Kop. Higher-order LCTRSs and their termination. In Proc. ESOP 24, volume 14577
of LNCS, pages 331–357, 2024.

[4] K. Hagens and C Kop. Matrix invariants for program equivalence in lctrss. In Proc. WPTE 23,
2023.

[5] K. Hagens and C. Kop. Rewriting induction for higher-order constrained term rewriting systems.
In Proc. LOPSTR 24, volume 14919, pages 202–219, 2024.

[6] K. Sato, K. Kikuchi, T. Aoto, and Y. Toyama. Correctness of context-moving transformations for
term rewriting systems. In Proc. LOPSTR 15, volume 9527 of LNCS, pages 331–345, 2015.

8

Basis-Sensitive Quantum Typing via Realizability
Alejandro Díaz-Caro1,2, Octavio Malherbe3, and Rafael Romero4,5,6

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
2 Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
3 Universidad de la República, FIng, IMERL, Montevideo, Uruguay
4 Universidad de Buenos Aires, FCEN, DC, Buenos Aires, Argentina

5 CONICET-Universidad de Buenos Aires, ICC, Buenos Aires, Argentina
6 PEDECIBA, Universidad de la República-MEC, Montevideo, Uruguay

1 Introduction
In the context of quantum physics, there are impossibility theorems stating that arbitrary
quantum states cannot be copied or deleted [10]. For this reason, when designing quantum
programming languages, quantum bits (qubits) are often modelled as linear resources (as in
linear logic [6]) within type systems. Qubits are vectors in a Hilbert space1, so our starting
point will be a quantum lambda calculus that manipulates vectors to perform computations.
There is, however, a subtlety in these impossibility theorems. Arbitrary qubits cannot be copied,
but it is indeed possible to do so with known qubits. This implies that qubits with known values
behave as classical data and can be treated accordingly. Moreover, it suffices to know the basis
to which a qubit belongs in order to copy and delete it. This is a well-known fact in quantum
information theory, a fact that underlies many quantum algorithms.

In most quantum programming languages, qubits are interpreted in a canonical basis (often
called the computational basis); see, for instance, [4, 7–9]. In this fashion, classical bits are
represented by the basis vectors, and qubits as norm-1 linear combinations of bits. We are
allowed to copy and delete classical bits freely, while such operations on arbitrary qubits remain
restricted.

In this work, we start from the quantum-control lambda calculus defined in [4]. This calculus
was introduced using a realizability technique, which allows one to extract a type system from
its operational semantics. Our aim is to extract a type system, via a realizability technique, that
is able to track bases, so that qubits in known bases can be treated classically, while unknown
qubits are still handled linearly.

2 The λB calculus
Realizability. Realizability is a technique for extracting type systems from the operational
semantics of a calculus, resulting in a system in which safety properties hold by construction.

The steps to define a programming language using this technique are as follows. First, define
a calculus equipped with a deterministic evaluation strategy. Second, define types as sets of
closed values in the language, optionally introducing operations to build more complex types.
Third, define the typing judgement Γ ⊢ t : A, where Γ is a context of typed variables, t a term
in the calculus, and A a type, as the property that for every valid substitution θ of Γ, the term
θ(t) reduces to a value in A, i.e., θ(t)↠ v ∈ A.

1A vector space equipped with an inner product.

Basis-Sensitive Quantum Typing via Realizability A. Díaz-Caro, O. Malherbe, & R. Romero

Pure values v ::= x | λxB . t⃗ | |0⟩ | |1⟩
Pure terms t ::= v | t t | (t, t) | letB⊗B (x, y) = t⃗ in t⃗

| case t⃗ of{v⃗ 7→ t⃗ | · · · | v⃗ 7→ t⃗}
Value distributions v⃗ ::= v | v⃗ + v⃗ | α · v⃗ (α ∈ C)

Term distributions t⃗ ::= t | t⃗+ t⃗ | α · t⃗ (α ∈ C)

Table 1: Syntax of the calculus

In this setting, each typing rule corresponds to a provable theorem. For instance, if Γ ⊢ t : A
implies ∆ ⊢ r : B, then the following rule is derivable:

Γ ⊢ t : A
∆ ⊢ r : B

For the first step, we adopt the grammar described in Table 1. It includes pair constructors
and destructors, two boolean values, and a quantum conditional case construct. These terms
are closed under linear combination, forming a vector space over C. We define a language in
the “quantum data and control” paradigm, which allows the superposition of programs. Such
superpositions are represented as norm-1 linear combinations of terms.

The novel feature of the calculus lies in its abstraction construct, which is decorated with a
basis B. This basis is defined as a set of value distributions that are pairwise orthogonal. Beta
reduction is performed in a call-by-value fashion, but with a crucial twist: if the argument of the
abstraction belongs to the specified basis, then standard beta-reduction is applied. Otherwise,
if the value distribution can be rewritten as a linear combination of elements in that basis, the
reduction proceeds by distributing the application over the components of the decomposition.

This mechanism generalises the call-by-basis strategy introduced in [2]. We now define a
substitution operation that incorporates this behaviour:

Definition 2.1. For a term distribution t⃗, value distribution v⃗, variable x and orthogonal basis
A, we define the substitution t⃗⟨v⃗/x⟩A as:

t⃗⟨v⃗/x⟩A =

∑
i∈I αit⃗ [⃗bi/x] A = {b⃗i}i∈I and v⃗ ≡∑

i∈I αib⃗i∑
i∈I αit⃗ [vi/x] A = K and v⃗ =

∑
i∈I αivi

Undefined Otherwise

We extend the substitution for more than one pair of variables. This definition is extended
to pair of values in the following way. Let v⃗ =

∑
i∈I αi(v⃗i, w⃗i):

t⃗⟨v⃗/x⊗ y⟩A⊗B =
∑

i∈I
αit⃗⟨v⃗i/x⟩A⟨w⃗i/y⟩B

The K basis represents the canonical basis and behaves analogously to the linear substitution
defined in [4]. This special basis is necessary to enable higher-order substitution, since it is not
possible to define a finite set of basis vectors that generates the vector space of functions A⇒ B,
for arbitrary types A and B.

With the substitution defined, we can design the reduction system in table 2. We take
the liberty to omit the contextual rules, since they are fairly standard. The reduction is weak,
meaning there is no action under lambda abstractions nor in the branches of the case construct.

10

Basis-Sensitive Quantum Typing via Realizability A. Díaz-Caro, O. Malherbe, & R. Romero

n∑

i=1

αi(λxA . t⃗i) v⃗ →
n∑

i=1

αit⃗i⟨v⃗/x⟩A If t⃗i⟨v⃗/x⟩A is well-defined

letB⊗B′ (x, y) = v⃗ in t⃗→ t⃗⟨v⃗/x⊗ y⟩B⊗B′

case v⃗ of{v⃗1 7→ t⃗1 | · · · | v⃗n 7→ t⃗2} →
n∑

i=1

αit⃗i If v⃗ ≡
n∑

i=1

αiv⃗i

Table 2: Reduction system

Example 2.2. Using this system, we can consider the duplicator function in the Hadamard
basis X = {|+⟩, |−⟩} applied to either |+⟩ or |0⟩ as such:

(λxX.(x, x))|+⟩↠ (|+⟩, |+⟩)

(λxX.(x, x))|0⟩ = (λxX.(x, x))(
1√
2
|+⟩+

1√
2
|−⟩)↠ 1√

2
(|+⟩, |+⟩) +

1√
2

(|−⟩, |−⟩)

This is not a new operation, any language that implements arbitrary unitary gates is able to
encode this program. For example, a language just manipulating unitary gates could implement
this program. However, this term which duplicates the qubits in the basis X, or generates Bell
states in the computational basis, can be generalized to any basis.

The main point here is that the operation is native to the language, without even introducing
the concept of unitary gate. Adding more information into the term allow us more flexibility
when writing functions. In doing so, we hope to add a layer of abstraction between language
and quantum circuits, more in line with modern classical programming languages.

2.1 Typing system
In order to define a type system, first we need to select which sets will act as types. We will
choose sets of orthogonal qubits to act as bases and a simple algebra to form more complex
types. The final piece is an operation which allows us to span a base of values, we call this
operation ♯ (sharp). Members of this type represent linear combinations of values, and will be
our unknown qubits. The ♯ operator can be thought as the opposite of the exponential bang
!. While the ! marks resources as non-linear, the ♯ instead marks them as linear (i.e. non-
duplicable). The type semantics is described in Table 3, where S1 is the set of norm-1 vectors.
Ultimately, this allows us to prove which typing rules are valid. There are infinite valid rules,
since typing rules are just theorems that we can prove, but we are interested in those which
will help us to build a sufficiently expressive language.

Marking a lambda abstracion with a base BX introduces the possibility of stopping progress.
If the argument cannot be written as the linear combination of members ofX, then the reduction
is stuck. We do not interpret these stuck terms as meaningful values, so whenever we bind a
variable we wish to discriminate these cases on the typing rules. In order to do this, we will
require the type A of the arguments to be a subtype of the space generated by BX (noted
A ≤ ♯BX). So every member of A can be written as a linear combination of values in BX .
Since we are dealing with sets of values as the semantic of our types, the subtyping relationship
is merely the set inclusion.

11

Basis-Sensitive Quantum Typing via Realizability A. Díaz-Caro, O. Malherbe, & R. Romero

JBXK = X JA×BK : =
{

(v⃗, w⃗) : v⃗ ⊩ JAK, w⃗ ∈ JBK
}

J♯AK : = (JAK⊥)
⊥ JA→ BK :=

{
w⃗ : ∀v⃗ ∈ JAK, w⃗v⃗ ⊩ B

}

Where X is an orthogonal basis and A⊥ = {v⃗ ∈ S1 | ∀w⃗ ∈ A, v⃗ ⊥ w⃗}

Table 3: Unitary semantics of types

x : A ⊢ x : A
(Axiom)

v⃗ ∈ X ♭X
⊢ v⃗ : BX

(Basis)
Γ ⊢ t⃗ : A ∆ ⊢ s⃗ : B

Γ,∆ ⊢ (⃗t, s⃗) : A×B
(Pair)

Γ, x : A ⊢ ∑n
i=1 αit⃗i : B A ≤ ♯BX

Γ ⊢ ∑n
i=1 αiλxBX

. t⃗i : A⇒ B
(UnitLam) Γ ⊢ s⃗ : A⇒ B ∆ ⊢ t⃗ : A

Γ,∆ ⊢ s⃗ t⃗ : B
(App)

Γ ⊢ t⃗ : A1 ×A2 ∆, x : A1, y : A2 ⊢ s⃗ : C A1 ≤ ♯BX A2 ≤ ♯BY
Γ,∆ ⊢ letBX⊗BY

(x, y) = t⃗ in s⃗ : C
(LetPair)

Γ ⊢ t⃗ : A1 ⊗A2 ∆, x : ♯A1, y : ♯A2 ⊢ s⃗ : C A1 ≤ ♯BX A2 ≤ ♯BY
Γ,∆ ⊢ letBX⊗BY

(x, y) = t⃗ in s⃗ : ♯C
(LetTens)

Γ ⊢ t⃗ : B{v⃗i}n
i=1

∀i, ∆ ⊢ s⃗i : C

Γ,∆ ⊢ case t⃗ of{v⃗1 7→ s⃗1 | · · · | v⃗n 7→ s⃗n} : C
(Case)

Γ ⊢ t⃗ : ♯B{v⃗i}n
i=1

∀i ̸= j, ∆ ⊢ s⃗i ⊥ s⃗j : C

Γ,∆ ⊢ case t⃗ of{v⃗1 7→ s⃗1 | · · · | v⃗n 7→ s⃗n} : ♯C
(UnitCase)

∀i ̸= j, Γ ⊢ t⃗i ⊥ t⃗j : A
∑n
i=1 |αi|2 = 1

Γ ⊢ ∑n
i=1 t⃗i : ♯A

(Sum)

Γ ⊢ t⃗ : B ♭A

Γ, x : A ⊢ t⃗ : B
(Weak)

Γ, x : A, y : A ⊢ t⃗ : B ♭A

Γ, x : A ⊢ t⃗ [y := x] : B
(Contr)

Where the property ♭ is defined as: ♭X ⇐⇒ ∀v⃗, w⃗ ∈ JXK, v⃗ ̸= w⃗ ⇒ ⟨v⃗ | w⃗⟩ = 0

Table 4: Some valid typing rules

Once we have a type algebra defined, we can start proving the validity of some rules. This
will ensure that the extracted system will be correct by construction. Intuitively, we will state
that a judgement Γ ⊢ t⃗ : A is valid when: “Every substitution σ such that σ(x) ∈ JΓ(x)K
validates that σ(⃗t), reduces to w⃗ ∈ JAK”. In the same way, a rule is valid if starting from valid
hypotheses we arrive to a valid conclusion. In table 4 we state some of these rules.

Most of the rules are fairly standard, but we would like to highlight the UnitCase rule.
There, we ask for an orthogonality judgement ∆ ⊢ s⃗i ⊥ s⃗j : C. This means that “For every
σ substitution such that σ(x) ∈ J∆(x)K, σ(s⃗i) and σ(s⃗j) reduce to orthogonal values in JCK”.
This is necessary to preserve the norm of the terms when the condition is a linear combination
of the different possible vectors. The argument must be provided externally, so in a possible
implementation, the programmer would be tasked with the responsibility of providing a proof

12

Basis-Sensitive Quantum Typing via Realizability A. Díaz-Caro, O. Malherbe, & R. Romero

of orthogonality. This follows the line pioneered in [1] and the refinements from [4].
We will say a lambda term represents a function F : Cn → Cn if it encodes the action of

F on vectors. With the typing judgements we have, we can characterize unitary operators as
functions in the unitary semantic of types ♯BX ⇒ ♯BY .

Theorem 2.3. Let BX , BY be orthonormal bases of size n. A closed λ-abstraction λxX . t⃗ is
a value of type ♯BX → ♯BY if and only if it represents a unitary operator F : Cn → Cn.

This result extends to unitary distributions of lambda abstractions since λxX .
∑n
i=1 αit⃗i is

syntactically different but computationally equivalent to
∑n
i=1 αi(λxX . t⃗i).

2.2 Specification system

We found a somewhat interesting extreme when we restrict the sets forming the types to be
singletons. The resulting system replicates the term reduction inside the strict typing rules and
forms a sort of specification system. In short, sequents take the following form: x1 : v⃗1, · · · , xn :
v⃗n ⊢ t⃗ : w⃗ (We omit the brackets in singleton sets). And so, we can read the previous sequent
as: “Every substitution σ such that σ(xi) = v⃗i validates that σ(⃗t), reduces to w⃗”. With this in
mind, we can design inference rules that only use singleton sets as types. For example:

x : |+⟩ ⊢ x : |+⟩
(Ax)

y : |+⟩ ⊢ y : |+⟩
(Ax)

x : |+⟩, y : |+⟩ ⊢ (x, y) : |+⟩ × |+⟩
(Pair)

x : |+⟩ ⊢ (x, x) : |+⟩ × |+⟩ (Contr)

⊢ λx|+⟩.(x, x) : |+⟩ → (|+⟩ × |+⟩)
(Lam)

⊢ |+⟩ : |+⟩ (Ax)

⊢ (λx|+⟩.(x, x))|+⟩ : |+⟩ × |+⟩
(App)

This result is not surprising. When dealing with classic computation, regardless of the
basis, if we restrict the possible inputs to only one option, we can statically determine the
output without having to reduce the term.

However this changes when entangled qubits are involved. Entangled quantum states are
states where a qubit cannot be described precisely and independently from another qubit. So
for example the state 1√

2
((|0⟩, |0⟩) + (|1⟩, |1⟩)) cannot be described as a pair of two separate

values v⃗ and w⃗. We can however use the let construct to destroy the pair, and in that case, we
will have to type two separate variables. As expected, there is an inherent loss of precision due
to the physical nature of the state, and this is reflected in the type we are able to assign. This
indicates that the system is well constructed, as no singleton can correctly capture the value.

3 Conclusions and future work

With this work we aim to define a quantum lambda calculus that provides the implementer
with more options when writing functions. The added information of the basis on the lambda
abstractions helps to build a more informative and precise type system than previous iterations.
An important feature of this system is the characterization of unitary operators via the semantic
of the types ♯BX ⇒ ♯BY .

A subproduct of the technique we used to prove the type judgements, is the specification
system which in a way mirrors Hoare logic. This opens up a possible research line of defining
a rigorous set of rules to reason about the correctness of quantum programs via realizability.

13

Basis-Sensitive Quantum Typing via Realizability A. Díaz-Caro, O. Malherbe, & R. Romero

The next steps would be to give a categorical model to the calculus following the one in [5],
to study its semantics and how it relates to other calculi. Another line of work would be
to define a translation into an intermediate language such as ZX-calculus alongside the lines
of [3]. Proving that, even though the programs are detached from the circuitry, they can still
be implemented concretely.

Introducing the basis information can lead to programs that are more readable and intuitive.
The obvious tradeoff is that when writing these programs one must have in mind the basis for
each function and act accordingly. We tried to strike a balance where the additional information
leads to a more precise typing without being too cumbersome to read.

References
[1] T. Altenkirch and J. Grattage. A functional quantum programming language. In 20th Annual

IEEE Symposium on Logic in Computer Science (LICS’ 05), page 249–258. IEEE, 2005.
[2] Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic Lambda-calculus. Logical Methods in

Computer Science, Vol. 13, Issue 1, 03 2017.
[3] Agustin Borgna and Rafael Romero. Encoding high-level quantum programs as szx-diagrams.

Electronic Proceedings in Theoretical Computer Science, 394:141–169, November 2023.
[4] Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoit Valiron. Realizability in

the unitary sphere. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). IEEE, June 2019.

[5] Alejandro Díaz-Caro and Octavio Malherbe. Quantum control in the unitary sphere: Lambda-s1
and its categorical model. Logical Methods in Computer Science, Volume 18, Issue 3, September
2022.

[6] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. PhD thesis, Université de Paris 7, 1972.

[7] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
Quipper: a scalable quantum programming language. ACM SIGPLAN Notices, 48(6):333–342,
June 2013.

[8] Jennifer Paykin, Robert Rand, and Steve Zdancewic. Qwire: a core language for quantum circuits.
SIGPLAN Not., 52(1):846–858, jan 2017.

[9] Peter Selinger and Benoît Valiron. A Lambda Calculus for Quantum Computation with Classical
Control, page 354–368. Springer Berlin Heidelberg, 2005.

[10] William K. Wootters, William K. Wootters, and Wojciech H. Zurek. A single quantum cannot be
cloned. Nature, 299:802–803, 1982.

14

Compression for Coinductive Infinitary Rewriting

(A Preliminary Account)

Rémy Cerda1 and Alexis Saurin1,2

1 Université Paris Cité, CNRS, IRIF, F-75013 Paris, France
2 INRIA π3, Paris, France

Remy.Cerda@math.cnrs.fr, Alexis.Saurin@irif.fr

In “traditional” infinitary rewriting based on ordinal-indexed rewriting sequences and strong
Cauchy convergence, a key property of rewriting systems is compression, that is, the fact that
rewriting sequences of arbitrary ordinal length can be compressed to sequences of length ω.
Famous examples of compressible systems are left-linear first-order systems and infinitary λ-
calculi.

In this work, we investigate compression in the equivalent setting of coinductive infinitary
rewriting, introduced by Endrullis et al. [End+18], which we recall in Section 1 in a slightly
augmented form: the original work only covered first-order rewriting, we extend it to rewriting
of (possibly non-wellfounded) derivations in an arbitrary sytem of derivation rules.

Then in Section 2 we define the coinductive counterpart of compressed rewriting sequences,
and we present a general coinductive procedure turning arbitrary infinitary rewriting derivations
into compressed ones, without relying on a topological formalism. The coinductive presentation
of the two aforementioned examples, that is left-linear first-order systems and the full infinitary
λ-calculus, are endowed with compression lemmas as instances of our general method.

This is a preliminary work, as our main motivation is to tackle the rewriting induced on non-
wellfounded proofs by eliminating cuts. For future work, we will focus on the system µMALL∞

for multiplicative-additive linear logic with fixed points, the cut-elimination theorem of which
crucially relies on a compression lemma [Sau23]. In particular, we hope to be able to use a
coinductive compression step as a component of a fully coinductive cut-elimination proof.

1 Coinductive infinitary rewriting

In this first section, we recall the coinductive presentation of infinitary first-order rewriting from
[End+18]. Then we provide an extension of this presentation to infinitary λ-calculus, and to a
generic notion of rewriting system for non-wellfounded derivations.

1.1 First order infinitary rewriting

Fix a countable set V of variables. A first-order signature is a countable set Σ equipped with
an arity function ar : Σ → N; we fix such a signature. The set TΣ of first-order terms on this
signature can be defined inductively by the derivation rules:

x ∈ V
x ∈ TΣ

t1 ∈ TΣ . . . tar(c) ∈ TΣ

c(t1, . . . , tar(c)) ∈ TΣ (for each c ∈ Σ).

The set T∞
Σ of infinitary first-order terms on the signature Σ can then be defined by completing

TΣ with respect to the metric defined by d(s, t) := 2−(the smallest depth at which s and t differ), or
equivalently by treating the above rules coinductively [Bar93] (which we will denote by using
double inference bars).

Compression for Coinductive Infinitary Rewriting R. Cerda and A. Saurin

In this setting, an (infinitary) rewrite rule is a couple (p, q) where p ∈ TΣ and q ∈ T∞
Σ . An

infinitary term rewriting system (itrs) is a countable set of rewrite rules; we fix an itrs R.
Two terms s, t ∈ T∞

Σ are related by a rewrite step, denoted s −→ t, whenever there are a rule
(p, q) ∈ R, a (single-hole) context u[∗] and a substitution σ : V → T∞

Σ such that s = u[σ · p]
and t = u[σ · q] (where σ · p denotes the substitution of each x ∈ V by σ(x) in p).

A rewriting sequence of ordinal length γ is given by terms (sδ)δ≤γ together with rewrite
steps (sδ −→ sδ+1)δ<γ . Such a rewriting sequence is said to be strongly convergent if for all
limit ordinal δ ≤ γ, limϵ→δ d(sϵ, sϵ+1) = 0 and in addition, for all limit ordinal δ < γ, the steps
sϵ −→ sϵ+1 occur at depths tending to infinity when ϵ→ δ [Ken+95].

Definition 1. We say that s −→∞ t when there is an ordinal γ such that s −→
γ

∞ t is derivable

in the following system of rules (wheres simple bars denote inductive inferences and double
bars denote coinductive inferences, i.e. non-wellfounded derivations are allowed provided each
infinite branch crosses infinitely often a double bar):

s⇝⇝⇝⇝
γ,n

s′ s′ −⇁
γ

∞ t

(split)
s −→

γ

∞ t

x ∈ V
(var)

x −⇁
γ

∞ x

∀1 ≤ i ≤ n, si −→
γ

∞ ti

(liftc)
c(s1, . . . , sn) −⇁

γ

∞ c(t1, . . . , tn)

where s ⇝⇝⇝⇝
γ,n

s′ denotes any sequence s −→∗ s′1 −⇁
δ1

∞ t1 −→∗ s′2 −⇁
δ2

∞ . . . −⇁
δn

∞ tn −→∗ s′

such that ∀1 ≤ i ≤ n, δi < γ. (Notice that we are in fact defining two relations, namely −→
γ

∞

and −⇁
γ

∞, the latter one indicating that the former one occurs under a constructor.)

This coinductive presentation was introduced (with slightly different notations) by Endrullis
et al. [End+18], who prove that it is equivalent to the “traditional”, topology-based one. Indeed:

Theorem 2 ([End+18]). For s, t ∈ T∞
Σ , there is a strongly converging rewriting sequence from

s to t iff. s −→∞ t.

1.2 Infinitary λ-calculus

An identical path can be followed to present an infinitary λ-calculus. (Finite) λ-terms are the
elements of the set Λ defined by:

x ∈ V
x ∈ Λ

x ∈ V M ∈ Λ

λx.M ∈ Λ

M ∈ Λ N ∈ Λ

MN ∈ Λ

and the set Λ∞ of infinitary λ-terms can be defined either by metric completion [Ken+97] or by
treating these rules coinductively [EP13]. In both cases we work modulo α-equivalence (which
raises some subtleties, see [Kur+13] for a formal treatment.)

As usual, the reduction −→ of β-reduction is defined on Λ∞ by (λx.M)N −→ M [N/x] for
all M,N ∈ Λ∞ (where M [N/x] denotes the term obtained by substituting N to each free x in
M), as well as lifting to contexts. As above, we define:

Definition 3. For M,N ∈ Λ∞, we say that M −→∞ N when there is an ordinal γ such that

M −→
γ

∞ N is derivable with the rules (split), (var),

M −→
γ

∞ M ′

(liftλ)
λx.M −⇁

γ

∞ λx.M ′
and

M −→
γ

∞ M ′ N −→
γ

∞ N ′

(lift@)
MN −⇁

γ

∞ M ′N ′
.

16

Compression for Coinductive Infinitary Rewriting R. Cerda and A. Saurin

Theorem 4. For M,N ∈ Λ∞, there is a strongly converging β-reduction sequence from M to
N iff. M −→∞ N .

This can in fact be extended to all abc-infinitary λ-calculi from [Ken+97]. The corresponding
work (but the missing piece we intend to add) is presented in [Cer24; Cer25].

1.3 Rewriting non-wellfounded derivations

Consider the set D of all derivations obtained from a set of rules of one of the following shapes:

p1 . . . pk
(r)

c
or

p1 . . . pk
(r)

c

and some rewriting relation −→ on D. Just as we did in Definitions 1 and 3, we can define a
relation −→

γ

∞ on D by the rules (split) as well as:

(refl)
d −⇁

γ

∞ d
and

d1 −→
γ

∞ d′1 . . . dk −→
γ

∞ d′k
(liftr)

d −⇁
γ

∞ d′

where d (resp. d′) is a derivation concluded by a rule (r) as above, d1, . . . , dk (resp. d′1, . . . , d
′
k)

are the sub-derivations rooted at the premises of this rule, and (liftr) is coinductive whenever
(r) is. We say that d −→∞ d′ whenever there is γ such that d −→

γ

∞ d′.

Our presentations of first-order rewriting and β-reduction are instances of this construction.
Furthermore, as we did in Theorems 2 and 4, one can show that d −→∞ d′ iff. there is a strongly

convergent rewriting sequence from d to d′.
What remains to be investigated is whether this construction is compatible with validity

criteria, that is, global criteria used on top of non-wellfounded derivation systems to sort out
“incorrect” derivations, typically to avoid inconsistencies in non-wellfounded proof systems.
Our hope is that reasonable validity criteria on the rewritten derivations can be transported to
restrict the derivations defining −→∞ in such a way that −→∞ rewrites valid derivations into
valid derivations.

2 Compression lemmas

Two standard instances of the Compression lemma, which we would like to transport to the
coinductive setting we just presented, are the following:

Theorem 5 ([Ken+95]). Let R be a left-linear itrs, that is, no variable occurs twice in the
left component of a rule of R. Then for all s, t ∈ T∞

Σ , there is a strongly convergent rewriting
sequence from s to t iff. there is such a sequence of length at most ω.

Theorem 6 ([Ken+97]). For all M,N ∈ Λ∞, there is a strongly convergent β-reduction se-
quence from M to N iff. there is such a sequence of length at most ω.

2.1 Compressed rewriting sequences, coinductively

Since the “length” of a derivation d −→∞ d′ is not defined, we first need to introduce a
coinductive counterpart of strongly converging rewriting sequences of length ω, extending again
a definition from [End+18].

17

Compression for Coinductive Infinitary Rewriting R. Cerda and A. Saurin

Definition 7. With the notation of Section 1.3, a relation −→ω is defined on D by:

d −→∗ e e −⇁ω d′
(splitω)

d −→ω d′
(reflω)

d −⇁ω d

d1 −→ω d′1 . . . dk −→ω d′k
(liftωr)

d −⇁ω d′

Lemma 8. For d, d′ ∈ D, there is a strongly convergent rewriting sequence of length at most
ω from d to d′ iff. d −→ω d′.

In particular, this construction defines relations −→ω on T∞
Σ and Λ∞, capturing exactly

strongly convergent sequences of rewriting steps through R and β-reductions, respectively.
A relation −→∞ defined as in Section 1.3 has the (coinductive) compression property if any

derivation of d −→∞ d′ can be turned into a derivation of d −→ω d′, that is, if −→∞ = −→ω.
In particular for the relation −→∞ on T∞

Σ , the compression property can be obtained by

translating s −→∞ s′ as a strongly convergent rewriting sequence (Theorem 2), compressing

it (Theorem 5), and translating the compressed sequence again (Lemma 8). Similarly, the
compression property in Λ∞ is a consequence of Theorems 4 and 6 and Lemma 8. However,
we would like to build a direct, explicit proof, without resorting to ordinal-based infinitary
rewriting.

2.2 A general proof structure

With the general notations from Section 1.3, consider the following properties:

Pγ,n : For all d, d′ ∈ D, if d ⇝⇝⇝⇝
γ,n

d′ then there are d′′ ∈ D and an ordinal δ < γ such

that d −→∗ d′′ −⇁
δ

∞∗ d′.

Q : For any ordinal δ, if ∀m ∈ N, Pδ,m holds, then for any reduction d′n −⇁
δ

∞ e′n −→
d′ there is a d′′n ∈ D such that d′n −→∗ d′′n −⇁

δ

∞ d′.

Theorem 9. If Q holds then −→∞ has the compression property.

Lemma 10. If d −→
γ

∞ e, then for any ordinal ϵ ≥ γ there is also a derivation of d −→
ϵ

∞ e.

Lemma 11. If d −→
γ

∞ e and e −→
δ

∞ f , then d −→
ϵ

∞ f for ϵ := max(γ + 1, δ).

Lemma 12. If Q holds then ∀γ, ∀n ∈ N, Pγ,n.

Proof. We proceed by well-founded induction over γ, and we suppose that ∀δ < γ, ∀m ∈
N, Pδ,m. Then we proceed by induction on n ∈ N.

If n = 0 the result is immediate since d ⇝⇝⇝⇝
γ,0

d′ means that d −→∗ d′. Otherwise, suppose

that d ⇝⇝⇝⇝
γ,n

d′. This can be decomposed as: d ⇝⇝⇝⇝
γ,n−1

d′n −⇁
δn

∞ e′n −→∗ d′, with δn < γ. Using

Q and the induction hypothesis (i.e. the fact that ∀m ∈ N, Pδn,m holds), there is a d′′n ∈ D
such that d ⇝⇝⇝⇝

γ,n−1
d′n −→∗ d′′n −⇁

δn

∞ d′. Notice that d ⇝⇝⇝⇝
γ,n−1

d′n −→∗ d′′n can be reformulated

as d ⇝⇝⇝⇝
γ,n−1

d′′n, whence we can apply the induction hypothesis on n − 1 and obtain a term d′′

and an ordinal δ′ < γ such that d −→∗ d′′ −⇁
δ′

∞∗ d′′n −⇁
δn

∞ d′, which can be simplified as

d −→∗ d′′ −⇁
δ

∞∗ d′ with δ := max(δ′, δn) < γ thanks to Lemma 10.

18

Compression for Coinductive Infinitary Rewriting R. Cerda and A. Saurin

Proof of Theorem 9. Suppose Q. We start with a derivation of d −→
γ

∞ e. It can only be

obtained through the rule (split), hence d⇝⇝⇝⇝
γ,n

d′ −⇁
γ

∞ e. Then:

1. We apply Lemma 12 to d ⇝⇝⇝⇝
γ,n

d′, and obtain d −→∗ d′′ −⇁
δ

∞∗ d′ −⇁
γ

∞ e for some

d′′ ∈ D and some ordinal δ < γ.

2. We apply the transitivity Lemma 11, and obtain d −→∗ d′′ −⇁
γ

∞ e.

3. We proceed coinductively in d′′ −⇁
γ

∞ e, building d −→∗ d′′ −⇁ω e. We conclude with

the rule (splitω).

Our proof departs from the one presented in the Coq formalisation of [End+18] in three
directions: first, as already stressed, it is parametric in the kind of rewriting we consider
(whereas their proof only covers first-order rewriting); second, our definition of −→∞ features
ordinal annotations to constrain the use of coinduction, whereas their definition relies on mixing
least and a greatest fixed points, which results in different treatments of the inductive part of the
proof; third, our proof provides an explicit coinductive procedure for compressing derivations of
infinitary rewritings. This suggests that compression may be computable, in a sense and under
conditions that are yet to be made precise (which we leave for further work).

2.3 Back to our main examples

In the property Q, we isolated the precise step where the specific properties of the considered
rewriting system come into play. Let us come back to the two previously described examples,
that is left-linear itrs and infinitary λ-calculus, and instantiate Theorem 9.

Lemma 13. If R is a left-linear itrs, then the relation −→ it defines on T∞
Σ satisfies the

property Q.

Proof sketch. Let δ be an ordinal such that ∀m ∈ N, Pδ,m holds, and consider a derivation
of s′n −⇁

δ

∞ t′n −→ s′. The last step can be described as p[σ] −→ q[σ] for a substitution σ.

The key observation is that since p is finite, we can analyse s′n −⇁
δ

∞ t′n inductively (using the

hypothesis on δ when we meet ⇝⇝⇝⇝
δ,m

) and produce, on one hand a finite reduction s′n −→∗ p[τ]

for some substitution τ , on the other hand derivations τ(x) −⇁
δ

∞ σ(x) for each x ∈ V. This

allows to conclude: s′n −→∗ p[τ] −→ q[τ] −⇁
δ

∞ q[σ]. The left-linearity assumption is used when

we define τ : if a variable x appeared several times in p, then we might define τ(x) in several
conflicting ways.

Corollary 14. If R is a left-linear itrs, then the relation −→∞ it defines on T∞
Σ has the

compression property.

The same holds in the infinitary λ-calculus:

Lemma 15. The relation −→ defined on Λ∞ satisfies the property Q.

Proof sketch. Let δ be an ordinal such that ∀m ∈ N, Pδ,m holds, and consider a derivation
of M ′

n −⇁
δ

∞ N ′
n −→ M ′. If the last β-reduction step occurs at top-level, i.e. N ′

n = (λx.P ′)Q′

and M ′ = P ′[Q′/x], then by analysing M ′
n −⇁

δ

∞ N ′
n and using the hypothesis Pδ,m we are

able to identify terms P,Q such that M ′
n −→∗ (λx.P)Q −→ P [Q/x], as well as P −⇁

δ

∞ P ′ and

19

Compression for Coinductive Infinitary Rewriting R. Cerda and A. Saurin

Q −⇁
δ

∞ Q′. For the last two hypotheses we are able to deduce that P [Q/X] −⇁
δ

∞ P ′[Q′/x] =

N ′
n. In general the last redex occurs in context, i.e. N ′

n = C[(λx.P ′)Q′], and we have to
scan this context inductively, collecting finite reductions P0 −→∗ P1 −→∗ . . . −→∗ PK as in
Lemma 13.

Corollary 16. The relation −→ defined on Λ∞ has the compression property.

In particular, notice that this justifies the coinductive definition of infinitary β-reduction as
it is usually written, that is, using −→ω instead of the rather impractical −→∞ [EP13; Cza20;

Cer24].

References

[Bar93] Michael Barr. “Terminal coalgebras in well-founded set theory”. In: Theoretical
Computer Science 114.2 (1993), pp. 299–315. doi: 10.1016/0304-3975(93)90076-
6.

[Cer24] Rémy Cerda. “Taylor Approximation and Infinitary λ-Calculi”. Theses. Aix-Marseille
Université, 2024. url: https://hal.science/tel-04664728.

[Cer25] Rémy Cerda. Nominal Algebraic-Coalgebraic Data Types, with Applications to In-
finitary λ-Calculi. To appear in the proceedings of FICS 2024. 2025. url: https:
//www.i2m.univ-amu.fr/perso/remy.cerda/fichiers/papiers/nominal-nu-

mu-fics.pdf.

[Cza20] Lukasz Czajka. “A new coinductive confluence proof for infinitary lambda calculus”.
In: Logical Methods in Computer Science 16.1 (2020). doi: 10.23638/LMCS-16(1:
31)2020.

[End+18] Jörg Endrullis et al. “Coinductive Foundations of Infinitary Rewriting and Infinitary
Equational Logic”. In: Logical Methods in Computer Science 14.1 (2018), pp. 1860–
5974. doi: 10.23638/LMCS-14(1:3)2018.

[EP13] Jörg Endrullis and Andrew Polonsky. “Infinitary Rewriting Coinductively”. In:
18th International Workshop on Types for Proofs and Programs (TYPES 2011).
2013, pp. 16–27. doi: 10.4230/LIPIcs.TYPES.2011.16.

[Ken+95] Richard Kennaway et al. “Transfinite Reductions in Orthogonal Term Rewriting
Systems”. In: Information and Computation 119.1 (1995), pp. 18–38. doi: 10 .

1006/inco.1995.1075.

[Ken+97] Richard Kennaway et al. “Infinitary lambda calculus”. In: Theoretical Computer
Science 175.1 (1997), pp. 93–125. doi: 10.1016/S0304-3975(96)00171-5.

[Kur+13] Alexander Kurz et al. “Nominal Coalgebraic Data Types with Applications to
Lambda Calculus”. In: Logical Methods in Computer Science 9.4 (2013). doi: 10.
2168/lmcs-9(4:20)2013.

[Sau23] Alexis Saurin. “A Linear Perspective on Cut-Elimination for Non-wellfounded Se-
quent Calculi with Least and Greatest Fixed-Points”. In: Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX 2023). 2023, pp. 203–
222. doi: 10.1007/978-3-031-43513-3_12.

20

Constructing a Curry Algebra where Indeterminates are

not Left Cancellative

Enno Folkerts

SAP SE, Germany
enno.folkerts@sap.com

1 Introduction

The origin of this extended abstract is the question which property of universal algebra is best
suited to model the role of free variables in term models of the lambda calculus. In some
mathematical contexts variables and indeterminates are just the same thing. In this paper
however, a variable is a term that can be turned into a semantic object when considering
term models. Indeterminates on the other hand are defined by a universal property. They
are semantic objects. The main result of this paper is the identification of a central property
of universal algebra that holds for variables in the typical term models while we construct a
combinatory algebra where this property does not hold for indeterminates. The property we
are after is the left cancellation property as defined below.

Definition 1. Let A be a combinatory algebra. Some u ∈ A is left cancellative if for all a, b ∈ A

A |= u · a = u · b implies a = b.

Left cancellative elements are oftentimes also called injective as the map FUNu defined by
a 7→ u · a for a ∈ A is injective on A.
The goal of the paper is to construct a combinatory algebra where all indeterminates are not
left cancellative.

Left Cancellation and Term Models Before we move on to the construction of a combi-
natory algebra where all indeterminates are not left cancellative let us first look at the natural
case of the term models M(λ) or M(λη) where all (elements representing) variables are in-
determinates and left cancellative. The basic notions of lambda theories and term model of a
lambda theory are defined in [2], 4.1.1 and 4.1.17. In what follows we allow lambda theories
T to also contain constants. The language L(T) of the theory T is uniquely determined by
the set of constants used, and the definition below is meant to extend [2], 4.1.17 for cases with
constants in the play.

Definition 2. For a lambda theory T and a term M in the language of T let [M]T denote
the equivalence class defined by T equality. The term model M(T) has as elements the set
{[M]T |M ∈ L(T)} and the operations are defined as in [2], 4.1.17.

Lemma 1. For each variable x the element [x]λη ∈M(λη) is left cancellative.

Proof. AssumeM(λη) |= [x]λη ·[M]λη = [x]λη ·[N]λη. Then λη ⊢ xM = xN . Then λη ⊢M = N
by CR and M(λη) |= [M]λη = [N]λη.

Next we need to elaborate about indeterminates of a combinatory algebra. We start with the
most general setting.

Indeterminates are not Left Cancellative E. Folkerts

Indeterminates and Their Construction

Definition 3. Let V be a variety of algebras, A,B ∈ V and X ⊂ B. A homomorphism ι : A → B
is an extension by indeterminates X if for each homomorphism ϕ : A → C and a map h : X → C
there is a unique homomorphism ψ such that

1. ψ ◦ ι = ϕ and
2. ψ

∣∣
X

= h.

A C

B

ϕ

ι
ψ

Elements x ∈ X are also called indeterminates of B.
In the paper The Lambda Calculus is Algebraic [8] Selinger presents two different ways to con-
struct extensions of a combinatory algebra A by a single indeterminate. The first construction
([8], page 4) is via polynomials in a variable z and denoted by A[z]. In the second construction
the combinatory algebra constructed is named B in proposition 8 of [8]. In case A is a Curry
algebra (see [8], page 13) the second construction can be simplified and presented in the form
below.

Definition 4. (Explicit Extension) Let A be a Curry algebra.
Then ∂A is the Curry algebra given by

1. |∂A| := |A| and a ·∂ b := S · a · b

2. K∂ := K ·K and S∂ := K · S
Then the map ι : A → ∂A given by ι : a 7→ K · a is a homomorphism and ι gives rise to an
extension by indeterminates {I}.
The polynomial and the explicit extension by a single indeterminate are isomorphic and can be
expanded to extensions by n indeterminates. In case T is a lambda theory and the base algebra
is the term modelM(T) there is a third way to construct an extension by indeterminates. We
can simply construct an extension by indeterminates via adding constants to the base theory.

Definition 5. (Extension by Constants)
Let T be a lambda theory and E be a set of new constants.

1. Let T (E) denote the theory of generated by T and E.

2. Let ιT ,E :M(T)→M(T (E)) be the canonical mapping defined by [M]T 7→ [M]T (E).

Lemma 2. Let E be a finite set of new constants.
Then ιT ,E defines an extension of indeterminates fromM(T) toM(T (E)) by {[e]T (E)|e ∈ E}.
Note that this also holds for an infinite set of constants and also note that one can also use free
variables for the construction.

The Proof Strategy We are now in the position to explain the strategy how to construct
the counter model. We choose two distinct constants e1, e2 and having E := {e1, e2} construct
a sequence of Curry algebras and respective homomorphisms:

A0→ι1A1→ϕA2→ι3A3 with

1. A0 :=M(λη) - the term model of λη.

2. A1 :=M(λη(E)) - the term model of λη(E) and let ι1 := ιλη,E .

3. Let A2 be the quotient model of A1 modulo a congruence relation ≃c containing the pair
([S · I · e1]λη(E), [S · I · e2]λη(E))

22

Indeterminates are not Left Cancellative E. Folkerts

4. Let ϕ be the homomorphism mapping an a ∈ A1 to its congruence class ϕ(a) ∈ A2 so
that ϕ([S · I · e1]λη(E)) = ϕ([S · I · e2]λη(E)).

5. Let A3 := ∂A2 be the explicit extension of A2 by a single indeterminate and ι3 be the
homomorphism ι associated with the explicit (see definition 4) extension from A2 to A3.

For the calculation below we write fi for the interpretation of the function symbol f in Ai. As
A3 is the explicit extension ∂A2 of A2 we have a ·3 b = S2 ·2 a ·2 b for a, b ∈ |A3| = |A2| and

I2 ·3 ϕ([ei]λη(E)) = S2 ·2 I2 ·2 ϕ([ei]λη(E)) = ϕ(S1) ·2 ϕ(I1) ·2 ϕ([ei]λη(E)) =

ϕ([S]λη(E)) ·2 ϕ([I]λη(E)) ·2 ϕ([ei]λη(E)) =

ϕ([S]λη(E) ·1 [I]λη(E) ·1 [ei]λη(E)) = ϕ([S · I · ei]λη(E))

This implies
A3 |= I2 ·3 ϕ([e1]λη(E)) = I2 ·3 ϕ([e2]λη(E))

By construction of ∂A2 the element I2 is the indeterminate of A3. If we can prove that A3 ̸|=
ϕ([e1]λη(E)) = ϕ([e2]λη(E)) then I2 is not left cancellative. It is therefore sufficient to show that

[e1]λη(E) ̸≃c [e2]λη(E).

Left Invertibility as the Technical Key Concept From now on we will use the convention
to identify equality classes [M]T with their representing term M . This improves readability
and we need to target e1 ̸≃c e2. In the presence of S ·I ·e1 ≃c S ·I ·e2 this can only work if there
is no combinator L such that λη(E) ⊢ L · (S · I · ei) = ei. That means there can be no L such
that λη ⊢ L(SIx) = x. Writing M ◦N for S(KM)N = λx.M(Nx) there can be no L such that
λη ⊢ L ◦ (SI) = I. In other words SI can not be left invertible in the monoid (M(λη), ◦). For
more details about general, left and right invertibility the reader is referred to [1], Definition
9.2.

To complete the proof it is therefore sufficient to settle two things:

(LI1) The lambda term SI is not left invertible in M(λη).

(LI2) There is a congruence relation≃c onM(λη(E)) such that Fe1 ≃c Fe2 for all combinators
F that are not left invertible in M(λη) while e1 ̸≃c e2.

This concludes the introduction. For further details and notations about the lambda calculus
the reader is referred to [2]. Next, we will present explanations which kind of extended analysis
of contexts is required before we then actually prove that SI is not left invertible. Finally, we
will construct the congruence relation ≃c on M(λη(E)) as required above.

2 Contexts and Bookkeeping of Bound Variables

Contexts of the lambda calculus are defined in [2], Definition 2.1.18. A more general treatise
about contexts can be found in section 2.1.1 of [11]. Contexts help understand how occurrences
of a term P in some other term M evolve when performing a reduction of M . They are the
backbone for proofs of confluence as they help structure the cases to be considered. They are
also important for the proof of (LI1) and (LI2) above. For (LI1) we need to be able to keep
track of the order of bound variables capturing a hole [] of a context C[]. As this can become
very tedious for multi hole contexts we only consider single hole contexts C[].

Definition 6. Let C[] be a context. Then SBC(C[]) is the sequence of variables bound by
the context C[].

23

Indeterminates are not Left Cancellative E. Folkerts

1. SBC([]) := ⟨⟩

2. SBC(λx.C[]) = ⟨x⟩ ∗ SBC(C[]).

3. SBC(C[]A) = SBC(C[]) for C[] a context and A a lambda term.

4. SBC(AC[]) = SBC(C[]) for C[] a context and A a lambda term.

This then helps answer the

First Context Challenge How can C[M][x := N] be expressed as C ′[M ′] so that we can
maintain control over the variables bound (capturing the hole of) by C ′[]?

Once this is mastered we can prove a vital lemma about the preservation of bindings:

Lemma 3. Assume x does not occur in a context C[] and C[xP]→→βηx.
Then P reduces to a head normal form with a free head variable y among the sequence SBC(C[])
of variables bound by C[].

Proof.
By induction on the length of the respective head reduction ending at λy1 . . . yk.xH1 . . . Hk .
In the induction step we have the situation C[xP] ≡ λv1 . . . vn.(λa.R)SQ1 . . . Qm. If xP occurs
within R we are in the scenario of the first context challenge and can proceed accordingly.
Another interesting case is the occurrence of xP within S, where a single occurrence of xP can
become multiplied within R[a := S]. That would lead to a multi hole context. But only one
of the occurrences of xP within R[a := S] can be the origin of the variable x in the head of
λy1 . . . yk.xH1 . . . Hk. To properly deal with this case another context challenge needs to - and
can - be mastered.

Second Context Challenge How can we simply deal with the challenge that we do not
consider multi hole contexts? The short answer is that the occurrences of a variable x that is
substituted in but not bound by a context and which gets multiplied by substitution should be
renamed to x1, . . . , xn. This way the distinct occurrences of x are marked by distinct terms xi.
If only one of the variables is relevant for a reduction under consideration we can move back to
a single hole context scenario.

3 Showing that SI is not left invertible

Note that λη ⊢ SI = (λxyz.xz(yz))I = λyz.z(yz). As in [6] let δ :≡ λyz.z(yz) and δy :≡
λz.z(yz). For a potential left inverse L of δ we get the equation λη ⊢ Lδy = L(λz.z(yz)) = y.
Then there would be (by [5], Corollary 2.5) a head reduction L(λz.z(yz))→→hλy1 . . . yk.yH1 . . . Hk

and λη ⊢ Hi = yi. We want to prove that this is not possible, and we plan to do that by trac-
ing the path of the occurrence (yz) in the associated head reduction. As the head reduction
moves on the term (yz) may turn into a term (yP), but lemma 3 proves that P sticks to a free
head variable z bound by the context around the (yP). To make the presentation below more
compact we write x for terms of the form λy1 . . . yk.xH1 . . . Hk with λη ⊢ Hi = yi.

Lemma 4. For x, y, P such that y /∈ FV (Px) we cannot have P [x := δy]→→hy.

Proof. By induction on the length of the head reduction. For the induction step assume P [x :=

δy]
n+1−→→hy. Then the length k of the head reduction path of P must be finite with k ≤ n+ 1.

24

Indeterminates are not Left Cancellative E. Folkerts

Case 1: k = n + 1 Then there is a P ′ such that P→hP
′ n−→→hQ and consequently P [x :=

δy]→hP
′[x := δy]

n−→→hQ[x := δy]. We deduce Q[x := δy] ≡ y and conclude by induction
hypothesis - using y /∈ FV (P ′x) - that this is not possible.

Case 2: k ≤ n Then x must be the head variable of Q ≡ λv1 . . . vp.xQ1 . . . Qr.

Then P [x := δy]
k−→→hQ[x := δy] ≡ λv1 . . . vp.δyQ1[x := δy] . . . Qr[x := δy]. We now need to

distinguish two cases:

1. The head variable in y traces back to the head occurrence of δy in Q[x := δy].

2. The head variable in y traces back to the other occurrences of δy in Q[x := δy].

The formal treatment of above case distinction leads us into the scenario of the second context
challenge, can be processed accordingly and delivers two cases:

(head) λv1 . . . vl.δy1Q1[x := δy2] . . . Qr[x := δy2]
n+1−k−→→ hy1

(comp) λv1 . . . vl.δy1Q1[x := δy2] . . . Qr[x := δy2]
n+1−k−→→ hy2

Remember that k ≤ n, so that n + 1 − k > 0 and r > 0. While (comp) relies on an easy
induction step the (head) case is the core of the proof.

We have λv1 . . . vl.δy1Q1[x := δy2] . . . Qr[x := δy2]
n+1−k−→→ hy1. For Ri :≡ Qi[x := δy2] we get

λv1 . . . vl.(λz.z(y1z))R1 . . . Rr→hλv1 . . . vl.(R1(y1R1))R2 . . . Rr
n−k−→→hy1 with y1 not occurring in

the Ri. Now use the context C[] :≡ λv1 . . . vl.(R1([])R2 . . . Rr so that C[y1R1]
n−k−→→hy1 and

SBC(C[]) = ⟨y1, . . . , yl⟩. Apply lemma 3 to see that R1 reduces to a head normal form with a
free head variable among the v1 . . . vl. But that means that λv1 . . . vl.(R1(y1R1))R2 . . . Rr has
a bound head variable among the v1 . . . vl. That is not possible as y1 has the free head variable
y1.

Corollary 1. SI is not left invertible.

Proof. Following the discussion at the beginning of this section assume there is an L such that
L ◦ (SI) = I. For new and distinct variables x, y apply above lemma for P :≡ Lx and δy.

By CR it is easily seen that SI is left cancellative in M(λη). Batenburg and Velmans were
the first to present a term of this kind. They show in [3] that the left cancellative (injective)
F = λxz.x(λp.z(zp)) does not possess a left inverse. Another trivial example is Ω.

4 Constructing the Congruence Relation

Following the discussion from the introduction we need to define a congruence relation ≃c
on M(λη(E)) satisfying Fe1 ≃c Fe2 for combinators F that are not left invertible. Note
that we cannot in general allow Fe1 ≃c Fe2 for open terms F that are not left invertible.
These terms do not possess good closure properties. Consider F :≡ λx.xy. Then F is not
left invertible while F ′ :≡ λxy.xy is (left) invertible. Allowing Fe1 ≃c Fe2 would deduce
e1 = λy.e1y = λy.Fe1 ≃c λy.Fe2 = λy.e2y = e2 which we need to avoid. We want to introduce
a new reduction →c generating ≃c so that βηc is confluent. That means that we need to
consider terms with free variables, and we are forced to introduce a new concept with better
closure properties.

25

Indeterminates are not Left Cancellative E. Folkerts

Definition 7. (Inertness)

1. A lambda term F from Λ(E) is inert if for a new variable x and arbitrary variables
y1, . . . , yn the term λxy1 . . . yn.Fx is not left invertible.

2. A context C[] from Λ(E) is inert if the term FUNC :≡ λx.C[x] is inert for any new x.

For closed terms F we have F is not left invertible if and only if F is inert. The context SI[]
is inert. The contexts [], []y and y[] are not inert while the contexts []ei are inert. We want
to avoid e1 ≃ e2 while we will to allow C[e1] ≃c C[e2] inert contexts C[]. While e1 ≃ e2 is too
strong for our needs we can allow C[e1] ≃c C[e2] for inert contexts possessing only a limited
functionality and shielding e1 ≃ e2 from being extracted. These contexts have the ability to
weaken the unwanted strength of the internal relation e1 ≃ e2. In this paper we only deal with
the simplistic internal relation e1 ≃ e2, but the methodology also works for more sophisticated
internal relations.

We now introduce a reduction →c on Λ(E) generating the anticipated congruence relation ≃c.
Definition 8. C[e1]→cC[e2] if C is an inert context.

Lemma 5. Assume C is inert and let C ′ be some other context. Then C ′[C] is inert.

Proof. The abstraction case follows from the built-in closure of inertness. The application cases
are trivial.

Lemma 6. βηc reductions are confluent and e1 ̸≃c e2 for the congruence generated by βηc.

Proof. Use the Hindley-Rosen lemma ([11], 1.3.4) using that inert terms are closed under

1. exchanging constants - this implies the confluence of →c.

2. replacing constants by variables - this implies the commutativity of c and βη reductions.

Then take into account that e1 and e2 are both in normal form.

Theorem 1. There is a Curry algebra B with indeterminate u ∈ B which is not left cancellative.

Proof. Look back at the discussion in the introduction. Condition (LI1) is proved in corollary
1. Condition (LI2) is proved in lemma 6.

Final Remarks The idea of adding new variables and considering a quotient algebra gen-
erated by equations containing these new variables (or generators) is not new. The approach
here takes some initial ideas from the presentation of groups as shown in [9].

We had expected to be able to deliver a fully algebraic proof of theorem 1, instead of that
the proof relies on being able to work in term models, a deep analysis of the interplay of
bound variables, contexts and reductions. It might be interesting to understand under which
conditions the construction can be generalized to other types of models.

The introduction of this paper and the model finally presented might lead to the impression that
indeterminates are not as well-behaved as variables. One might see the absolute interpretation
of lambda terms as given in section 2.2 of [8] challenged. The author does not take this view.
Considering an extension by indeterminates ι : A → B by a single indeterminate x the behaviour

26

Indeterminates are not Left Cancellative E. Folkerts

of x as indeterminate is determined by the model A and as good or bad as the behaviour of
variables in T (A).

There are other research activities around the term SI and a bunch of papers [10],[6],[4],[7]
attempt to show that SI is not a double fixed point combinator. There is no direct link from
the present paper to this research activity.

Acknowledgements The author thanks the anonymous referees for their valuable input.
Thanks also go to Femke van Raamsdonk, Giulio Manzonetto and Vincent van Oostrom for
their kind guidance in the preparation phase of the paper.

References

[1] Henk Barendregt and Giulio Manzonetto. A Lambda Calculus Satellite. College Publications,
2022. URL: https://www.collegepublications.co.uk/logic/mlf/?00035.

[2] Henk Pieter Barendregt. The lambda-calculus, its syntax and semantics. Number 103 in Studies
in Logic and the Foundations of Mathematics. North-Holland, revised edition, 1984.

[3] A. Batenburg and J. Velmans. Invertibility Properties of two λ-algebras. Doctoraalskriptie, Uni-
versity of Utrecht, 1983.

[4] Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and Andrew Polonsky. Clocked lambda
calculus. Math. Struct. Comput. Sci., 27(5):782–806, 2017. doi:10.1017/S0960129515000389.

[5] Enno Folkerts. Invertibility in λη. In Thirteenth Annual IEEE Symposium on Logic in Computer
Science, Indianapolis, Indiana, USA, June 21-24, 1998, pages 418–429. IEEE Computer Society,
1998. doi:10.1109/LICS.1998.705676.

[6] Benedetto Intrigila. Non-existent Statman’s double fixedpoint combinator does not exist, indeed.
Inf. Comput., 137(1):35–40, 1997. URL: https://doi.org/10.1006/inco.1997.2633, doi:10.

1006/INCO.1997.2633.

[7] Giulio Manzonetto, Andrew Polonsky, Alexis Saurin, and Jakob Grue Simonsen. The fixed point
property and a technique to harness double fixed point combinators. J. Log. Comput., 29(5):831–
880, 2019. URL: https://doi.org/10.1093/logcom/exz013, doi:10.1093/LOGCOM/EXZ013.

[8] Peter Selinger. The lambda calculus is algebraic. J. Funct. Program., 12(6):549–566, 2002.

[9] Charles C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia of math-
ematics and its applications. Cambridge University Press, 1994.

[10] Richard Statman. Some examples of non-existent combinators. Theor. Comput. Sci.,
121(1&2):441–448, 1993. doi:10.1016/0304-3975(93)90096-C.

[11] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

27

Proving Termination with CPO
Alejandro Díaz-Caro1,2, Gilles Dowek3, and Jean-Pierre Jouannaud4

1 Université de Lorraine, CNRS, Inria, LORIA Nancy, France
2 Universidad Nacional de Quilmes, Argentina. alejandro.diaz-caro@inria.fr

3 Inria and ENS Paris-Saclay, France. gilles.dowek@ens-paris-saclay.fr
4 ENS Paris-Saclay, France. jeanpierre.jouannaud@gmail.com

Abstract

In this paper, we show how to use the computability path ordering for proving termi-
nation of complex cut-elimination calculi aiming at providing a basis for quantum com-
putations. A new CPO rule for CPO is introduced which allows to overcome the lack of
transitivity of CPO –whose transitive closure is an order while CPO is not.

1 Introduction

A popular, effective simplification ordering for proving termination of rewrite rules in a first-
order setting is the recursive path ordering (RPO, [2]). Its higher-order generalization, the
computability path ordering (CPO, [1]) is as effective, but much less popular. In this paper,
we show that it can be used in practice to save lots of complex termination arguments. Our
examples originate from a higher-order calculus named LS modelling of quantum computations
[3, 4].

The computability path ordering (CPO) is a well-founded relation over typed lambda terms
that compares two terms by comparing their heads first, before recursing on their immediate
subterms. As RPO, it uses a precedence on function symbols –including abstraction and appli-
cation. Since the lambda calculus is non-terminating while its typed versions are terminating,
CPO must also include type comparisons. Of course, CPO decreases when beta reducing a
term, a rule common to all lambda calculi.

Applying CPO comparisons is easy once the precedence on function symbols and order on
types are given, which makes it very easy to use. A difficulty, however, is that CPO is not
transitive, hence is not an order, despite its name. In practice, it is sometimes necessary, when
comparing two terms u, v to invent some middle term w and compare u with w and w with v.
We propose here an additional CPO rule here that improves transitivity in practice.

2 CPO rules

We assume a simply typed λ-calculus generated by a set F of typed constants (the user’s
function symbols). We use [x]u for abstractions, @(u, v) for applications, and → for function
types. Our examples describe lambda calculi, which will have their own abstraction, application
and type constructors. We assume:

• a partial order on types >T , function types being strictly bigger than their arguments;
RPO can be used here.

• a quasi-ordering >F on F , called precedence, whose strict part >F is well-founded, and
equivalence is denoted by =F ;

easychair: Running title head is undefined. A. Díaz-Caro, G. Dowek & J.-P. Jouannaud

• for every f ∈ F , a status stat(f) ∈ {lex,mul} such that symbols equivalent in =F have
the same status.

Definition 1 (core CPO). CPO is the relation ≻∅ (≻ for short) where:

• for any given finite set X of variables, ≻X is inductively defined in Figure 1;

• t≻Xτ u if t ≻X u and τ(t) ≥T τ(u), also conveniently written in examples t : τ(t)≻Xτ u :
τ(u).

(F�) f(t)≻Xv if f ∈ F and s⪰Xτ v for some s ∈ t
(F=) f(t)≻Xg(u) if f ∈ F , f =F g, (∀i) f(t)≻Xui and t (≻τ)stat(f) u
(F>) f(t)≻Xg(u) if f ∈ F , f >F g and (∀i) f(t)≻Xui
(F@) f(t)≻X@(u, v) if f ∈ F , f(t)≻Xu and f(t)≻Xv
(Fλ) f(t)≻X [y]v if f ∈ F , f(t)≻X∪{z}vzy , τ(y) = τ(z) and z fresh
(FX) f(t)≻Xy if f ∈ F and y ∈ X

(@�) @(t, u)≻Xv if t⪰Xv or u⪰Xτ τv
(@=) @(t, u)≻X@(t′, u′) if

{
t = t′ and u≻Xu′, or
@(t, u) ≻X@ t′ and @(t, u) ≻X@ u′

where @(t, u) ≻X@ v if t≻Xτ v or else u⪰Xτ v or@(t, u)≻Xτ v
(@λ) @(t, u)≻X [y]v if @(t, u)≻Xvzy and z fresh
(@X) @(t, u)≻Xy if y ∈ X
(@β) @([x]t, u)≻Xv if tux ⪰Xv

(λ�) [x]t≻Xv if tzx⪰Xτ v, τ(x) = τ(z) and z fresh
(λ�X) [x]t≻X∪{z}v if tzx⪰Xτ v, τ(x) = τ(z) for some z ∈ FVar(v)

(λ=) [x]t≻X [y]v if tzx≻Xvzy , τ(x) = τ(y) = τ(z) and z fresh
(λ ̸=) [x]t≻X [y]v if [x]t≻X∪{z}vzy , τ(x) ̸= τ(y), τ(y) = τ(z) and z fresh
(λX) [x]t≻Xy if y ∈ X
(λη) [x]@(t, x)≻Xv if t⪰Xv and x /∈ FVar(t)

Figure 1: Core CPO

The parameter X serves as a meta-level binder to keep track of the variables that were
previously bound in the right-hand side but have become free when destructuring a right-hand
side abstraction. We say that a variable x is fresh with respect to a comparison u≻Xv if
x /∈ X ∪ FV (u, v).

Explicit variable renamings and the associated freshness conditions are used to make the
relation invariant by α-equivalence and by appropriate renaming of the variables in X. Note
that we must assume here that the expressions u and uzx have the same type, this is the
substitution Lemma of the formalism.

This version of CPO is called core CPO. More elaborated versions allow for small symbols
that behave differently from the big symbols used here, and for richer type theories, including
in particular inductive types [1] and dependent types [6].

Theorem 2 ([1]). The computability path ordering ≻X is (i) stable under instantiation, under
α-conversion and under renaming of the variables in X away from the free variables of the
compared terms; and (ii) the computability path ordering ≻∅ is monotonic and well-founded.

29

easychair: Running title head is undefined. A. Díaz-Caro, G. Dowek & J.-P. Jouannaud

Rule (λ�X)is new. Its proof is easily integrated to the CPO proof, see [5]. It serves re-
synchronizing abstractions when a previous use of rule (Fλ) deconstructed an abstraction on
the right-hand side while keeping the entire left-hand one. In practice, it allows us to shortcut
some proofs requiring middle terms to overcome the lack of transitivity.

In the following, we use CPO to show termination of two rewrite systems, one for natural
deduction [3], and one for the quantum in-left-right calculus [4].

2.1 Propositional natural deduction

We start with propositional natural deduction for which we give successively:

[x]u : A→ B → (A→ B) @(u, v) : (A→ B)→ A→ B (core)

λ(u) : (A→ B)→ (A⇒ B) u v : (A⇒ B)→ A→ B (user’s)
δ1∧(u, v) : (A ∨B)→ (A→ C)→ C δ2∧(u, v) : (A ∨B)→ (B → C)→ C

δ∨(u, v, w) : (A ∨B)→
(A→ C)→ (B → C)→ C

⟨u, v⟩ : A→ B → (A ∧B)

inl(u) : A→ A ∨B inr(u) : B → A ∨B

Figure 2: Signature

Γ ⊢ x : A
axiom x : A ∈ Γ

Γ ⊢ t : A Γ ⊢ u : B
Γ ⊢ ⟨t, u⟩ : A ∧B ∧-i

Γ, x : A ⊢ t : B

Γ ⊢ λ([x]t) : A⇒ B
⇒-i Γ ⊢ t : A⇒ B Γ ⊢ u : A

Γ ⊢ tu : B
⇒-e

Γ ⊢ t : A ∧B Γ, x : A ⊢ u : C

Γ ⊢ δ1∧(t, [x]u) : C
∧-e1

Γ ⊢ t : A ∧B Γ, x : B ⊢ u : C

Γ ⊢ δ2∧(t, [x]u) : C
∧-e2

Γ ⊢ t : A
Γ ⊢ inl(t) : A ∨B ∨-i1

Γ ⊢ u : B
Γ ⊢ inr(u) : A ∨B ∨-i2

Γ ⊢ t : A ∨B Γ, x : A ⊢ u : C Γ, y : B ⊢ v : C

Γ ⊢ δ∨(t, [x]u, [y]v) : C
∨-e

Figure 3: Typing rules

δ⊤(⋆, t) −→ t λ([x]t) u −→ tux
δ1∧(⟨t, u⟩, [x]v) −→ vtx δ2∧(⟨t, u⟩, [x]v) −→ vux

δ∨(inl(t), [x]v, [y]w) −→ vtx δ∨(inr(u), [x]v, [y]w) −→ wuy

Figure 4: Reduction rules

To show termination, we choose: for the order on types the recursive path ordering; for the
precedence, the empty one; and no status is needed.

The first rule decreases by case (F�), since t⪰∅
τ t.

30

easychair: Running title head is undefined. A. Díaz-Caro, G. Dowek & J.-P. Jouannaud

a+ b : S → S → S a× b : S → S → S a • u : S → A→ A
a · ⋆ : S → 1 δ1(e, u) : 1→ A→ A

u + v : A→ A→ A λ([x]u) : A→ B → (A⊸ B) u v : (A⊸ B)→ A→ B

inl(u) : A→ (A⊕B) inr(u) : B → (A⊕B) inlr(u) : A→ B → (A⊕B)

δ⊕(u, v, w) : (A⊕B)→ (A→ C)→ (B → C)→ C
δnd⊕ (u, v, w) : (A⊕B)→ (A→ C)→ (B → C)→ C

Figure 5: Signature

For the second rule, we have to prove that λ([x]t) u ≻ tux, for which we consider the middle
term @([x]t, u) which yields two goals, of which the second @([x]t, u) ≻ tux is case (@β). We are
therefore left with the goal (⪰ is enough since we have a strict comparison already):

λ([x]t) u ⪰ @([x]t, u), which yields two subgoals by case (F@):
1. λ([x]t) u ≻ [x]t, which yields by case (F�) the subgoal

1.1. λ([x]t) : A ⇒ B⪰τ [x]t : A → B, for which the type comparison A ⇒ B >T
A→ B succeeds since ⇒>F→, while the subgoal λ([x]t) ⪰ [x]t succeeds by (F�).

2. λ([x]t) u ≻ u, which yields by (F�)
2.1. u⪰τu, which succeeds trivially.

The last four are all similar, using with the middle term @([x]t, u). We carry out the last
one only:

δ∨(inr(u), [x]v, [y]w) ≻ @([y]w, u), which yields by (F>):
1. δ∨(inr(u), [x]v, [y]w) ⪰ [y]w, which succeeds by (F�).
2. δ∨(inr(u), [x]v, [y]w) ≻ u, which yields by (F�):

2.1. inr(u) : A ∨ B⪰τu : A, for which the comparison A ∨B >T A succeeds as
expected, while the subgoal inr(u) ⪰ u succeeds by (F�).

2.2 The quantum calculus LS[4]

We describe the signature, precedence and statuses, before giving the rules.
Expressions of the calculus LS belong to four different syntactic categories, called sorts:

term, type, unit, and scalar, where type is the type of expressions of sort term. Note that unit
and scalar expressions are both needed to express type expressions. In the sequel, by type
expression, we mean an expression of sort type, unit, or scalar.

We use a, b for arbitrary scalar expressions, e for unit expressions, 1 for the unit sort,
u, v, w, t for term expressions, and A,B,C for expressions of sort type. We use the column to
express membership to a sort, as in e : 1. We assume an order >s on sort expressions defined
by A >s e >s a if A : type, e : 1 and a : scalar.

We will use:

• the smallest order >T on type expressions containing the order >s on sort expressions and
the order >r such that T → U >r U , and such that V >T V ′ implies U → V >T U → V ′.
This order is a well-founded order on type expressions that can be used to generate CPO
(Lemma 2.3 in [4]);

• a multiset status for all function symbols;

• the signature given at Figure 5;

31

easychair: Running title head is undefined. A. Díaz-Caro, G. Dowek & J.-P. Jouannaud

δ1(a.⋆, t) −→ a • t λ([x]t) u −→ tux
δ⊕(inl(t), [x]v, [y]w) −→ vtx δ⊕(inr(u), [x]v, [y]w) −→ wuy

δ⊕(inlr(t, u), [x]v, [y]w) −→ vtx + wuy δnd⊕ (inl(t), [x]v, [y]w) −→ vtx
δnd⊕ (inr(u), [x]v, [y]w) −→ wuy δnd⊕ (inlr(t, u), [x]v, [y]w) −→ vtx

δnd⊕ (inlr(t, u), [x]v, [y]w) −→ wuy
a.⋆ + b.⋆ −→ (a+ b).⋆

λ([x]t) + λ([x]u) −→ λ([x](t + u)) inl(t) + inl(v) −→ inl(t + v)
inl(t) + inr(w) −→ inlr(t, w) inl(t) + inlr(v, w) −→ inlr(t + v, w)
inr(u) + inl(v) −→ inlr(v, u) inr(u) + inr(w) −→ inr(u + w)

inr(u) + inlr(v, w) −→ inlr(v, u + w) inlr(t, u) + inl(v) −→ inlr(t + v, u)
inlr(t, u) + inr(w) −→ inlr(t, u + w) inlr(t, u) + inlr(v, w) −→ inlr(t + v, u + w)

a • b.⋆ −→ (a× b).⋆ a • λ([x]t) −→ λ([x](a • t))
a • inl(t) −→ inl(a • t) a • inr(t) −→ inr(a • t)

a • inlr(t, u) −→ inlr(a • t, a • u)

Figure 6: Rules

• the following precedence on function symbols:
δ1 >F • >F ·⋆ >F × and {δ⊕, δnd⊕ } >F +>F {inl, inr, inlr, ·⋆} >F λ;

• the rules given at Figure 6.

This set of rules is conjectured to be terminating in [4]. We claim here that it is indeed
terminating, and that its proof can be entirely carried out with CPO, using >s for the order
on type expressions, >F for the order on function on the signature, and ≻ for the order CPO
itself. We give a few comparisons below.

δ1(a.⋆, t) ≻ a • t. By (F>), we get δ1(a.⋆, t) ≻ a and δ1(a.⋆, t) ≻ t. The first subgoal yields
a. ⋆ ≻τ a by (F�), which succeeds by (F�)again, using the fact that units are bigger then
scalars in ≥T . The second succeeds by (F�).

λ([x]t) u ≻ utx. As for the similar second rule of the first set, we use the middle term
@([x]t, u), and Rule (F@) to compare λ([x]t) u with @([x]t, u).

δ⊕(inl(t), [x]v, [y]w) ≻ vtx, and δ⊕(inr(u), [x]v, [y]w) ≻ wuy are similar.
δ⊕(inlr(t, u), [x]v, [y]w) ≻ vtx + wuy . Starts with (F>), then similar.
δnd⊕ (inl(t), [x]v, [y]w) ≻ vtx, δnd⊕ (inr(u), [x]v, [y]w) ≻ wuy , δnd⊕ (inlr(t, u), [x]v, [y]w) ≻ vtx, and

δnd⊕ (inlr(t, u), [x]v, [y]w) ≻ wuy are similar again.
a.⋆ + b.⋆ ≻ (a+ b).⋆. By (F>) twice, then (F�) twice.
λ([x]t) + λ([x]u) ≻ λ([x](t + u)). That’s where we will need the new rule (λ�X). By (Fλ),

we get
1.λ([x]t) + λ([x]u)≻z(t + u)zx = tzx + uzx. By (F=), we get

1.1. {λ([x]t), λ([x]u)}≻zτ{tzx, uzx} which reduces to
1.1.1. λ([x]t)≻zτ tzx, and by (λ�X), we get

1.1.1.1. tzx⪰τ tzx, which succeeds.
1.1.2. λ([x]u)≻zτ uzx, which is similar.

inl(t) + inl(v) ≻ inl(t + v). By (F>), then (F=), then (F�)twice.
inl(t) + inr(w) ≻ inlr(t, w), inl(t) + inlr(v, w) ≻ inlr(t + v, w), inr(u) + inl(v) ≻ inlr(v, u),

inr(u) + inr(w) ≻ inr(u + w), inr(u) + inlr(v, w) ≻ inlr(v, u + w), inlr(t, u) + inl(v) ≻ inlr(t +

32

easychair: Running title head is undefined. A. Díaz-Caro, G. Dowek & J.-P. Jouannaud

v, u), inlr(t, u) + inr(w) ≻ inlr(t, u + w), and inlr(t, u) + inlr(v, w) ≻ inlr(t + v, u + w) are then
all similar.

a • (b.⋆) ≻ ((a× b).⋆). By (F>) twice, then (F�) twice.
a • λ([x]t) ≻ λ([x](a • t)). By (F>), we get

1. a • λ([x]t) ≻ [x](a • t), and by (Fλ):
1.1. a • λ([x]t)≻za • tzx. By (F=), we get:

1.1.1. {a, λ([x]t)}≻zτ{a, tzx}, which reduces to
1.1.1.1. λ([x]t)≻zτ tzx, wich suceeds with @([x]t, z) as middle term. Note

that we could use (λ�X)as we did before. Both do succeed in this special case.
a • inl(t) ≻ inl(a • t). By successively (F>), (F=)and (F�).
a • inr(t) ≻ inr(a • t) and a • inlr(t, u) ≻ inlr(a • t, a • u) are similar.

3 Conclusion

In many cases, we have used a middle term to overcome the lack of transitivity of CPO. These
cases are all similar, their shape is discussed in [1], where a tactic is suggested that would cover
our uses of a middle term here. We have also used the new (re-synchronization) rule to carry
out the termination proof of the calculus LS , but we could have used a middle term as well in
those specific cases, as we pointed out.

The calculus LS is a very interesting example which shows very well both indeed the flexi-
bility and strength of CPO.

The well-foundedness proof of CPO is based on Girard’s reducibility candidates, hence its
name. It is therefore no wonder that CPO is so efficient to prove termination of sets of rules
that describe various forms of cut elimination. CPO is implemented in Wanda [7], and possibly
in other termination tools as well. We believe that it should be a must to implement CPO in
all termination tools that exist on the market and participate to the termination competition.

Acknowledgements: To Cynthia Kop who suggested the use of a middle term in order to
simplify one of the termination proofs.

This work has been partially supported by the European Union through the MSCA SE
project QCOMICAL (Grant Agreement ID: 101182520), by the Plan France 2030 through the
PEPR integrated project EPiQ (ANR-22-PETQ- 0007), and by the Uruguayan CSIC grant
22520220100073UD.

References
[1] Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio. The computability path ordering.

Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:3)2015.
[2] Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–301, 1982.

doi:10.1016/0304-3975(82)90026-3.
[3] Alejandro Diaz-Caro and Gilles Dowek. A linear linear lambda calculus. Mathematical Structures

in Computer Science, 34(10):1103–1133, 2024. doi:10:1017/S096012952400019.
[4] Alejandro Diaz-Caro and Gilles Dowek. A new introduction rule for disjunctions. arXiv:2502.19172,

2025. URL: https://archiv.org/abs/2502.19172.
[5] Alejandro Díaz-Caro, Gilles Dowek, and Jean-Pierre Jouannaud. Termination. Extended abstract

to be prsented at Workshop HOR, Birmingham, UK, July 14, 2025, 2025. URL: https://inria.
hal.science/hal-05113173.

33

easychair: Running title head is undefined. A. Díaz-Caro, G. Dowek & J.-P. Jouannaud

[6] Jean-Pierre Jouannaud and Jianqi Li. Termination of dependently typed rewrite rules. In Thorsten
Altenkirch, editor, 13th International Conference on Typed Lambda Calculi and Applications, TLCA
2015, July 1-3, 2015, Warsaw, Poland, volume 38 of LIPIcs, pages 257–272. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.TLCA.2015.257,
doi:10.4230/LIPICS.TLCA.2015.257.

[7] Cynthia Kop. WANDA - a higher order termination tool (system description). In Zena M. Ariola,
editor, 5th International Conference on Formal Structures for Computation and Deduction, FSCD
2020, June 29-July 6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 36:1–
36:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/
LIPIcs.FSCD.2020.36, doi:10.4230/LIPICS.FSCD.2020.36.

34

Towards the type safety of Pure Subtype Systems

Valentin Pasquale1 and Álvaro Garćıa-Pérez2

1 CEA List, Université Paris-Saclay, Palaiseau, France
valentin.pasquale@cea.fr

2 CEA List, Université Paris-Saclay, Palaiseau, France
alvaro.garciaperez@cea.fr

Abstract

We reformulate the open problem of type safety in Hutchins’ Pure Subtype Systems
(PSS) by proving it under a different conjecture. PSS (hereafter in the singular) harmo-
niously mixes terms and types, thus enabling a number of advanced language features that
combine dependent types with higher-order subtyping. In PSS, terms and types belong
to the same kind (everything is a subtype) and the resulting theory is based on subtyp-
ing. However, conflating terms and types results in high impredicativity and complicates
PSS meta-theory. The crucial property of type safety in PSS hinges on the well-known
problem of transitivity elimination. Despite Hutchins’ attempts, he failed to prove a key
commutativity property, and type safety has remained an open problem for more than a
decade. We introduce a reformulation of Hutchins’ PSS, which we name Machine-Based
Pure Subtype System (MPSS), which is based on a mechanism reminiscent of the Kriv-
ine Abstract Machine, where the proof of transitivity elimination is direct. Alas, in our
MPSS, subtyping is scope-dependent and type safety rests on the conjecture that subtyp-
ing is congruent with covariant contexts. Our reformulation of type safety in PSS uncovers
a dilemma about a commutativity/congruence problem, which sheds new light on possible
solutions and evidences the difficulty of the challenge proposed by Hutchins.

Hutchins’ Pure Subtype Systems (PSS for short) [3, 2] have been proposed as a novel
approach to type theory that enables a number of advanced language features for extensibility
and genericity which, among others, harmoniously solve the expression problem in both the
functional and object-oriented (OO) programming styles [7, 8, 2]. PSS (hereafter in the singular)
blurs the distinction between types and terms, and thus it naturally combines dependent types
and higher-order subtyping, which makes the approach very promising as a basis for generic,
modular, and extensible programming. However, a proof of type safety in PSS is lacking, and
this crucial property is only shown to hold under the conjecture that two key reduction relations
in the system commute [2]. Commutativity of the two reductions is an instance of a recurrent
problem in higher-order subtyping known as transitivity elimination. Type safety in PSS has
remained an open problem for more than a decade.

We introduce a reformulation of Hutchins’ PSS that is based on an mechanism reminiscent
of the Krivine Abstract Machine, where the proof of transitivity eliminaiton is direct. The
paragraphs below elaborate on PSS and on how our contribution could pave the way for a
proof of PSS type safety.

Contrary to traditional type systems, PSS harmoniously mixes terms and types. Consider
the natural number 3 and the type Nat of natural numbers. In PSS one can have a term that
encodes Nat + 3 with the naive Church encoding of naturals, which type-checks to Nat . Terms
can also be used instead of types: so for instance the function λx≤ 3.x, whose argument type
is 3 (we write ≤ for the subtyping relation, this is, the substitute of typing in our calculus),
is a valid expression. The latter example is an instance of bounded quantification [5] where the
term 3 is the singleton type {3} and the subtyping relation is akin to the subset relation.

Towards the type safety of Pure Subtype Systems V. Pasquale and A. Garćıa-Pérez

PSS replaces the typing relation with a subtyping relation, which greatly increases expres-
sivity. Since terms and types belong to the same kind, PSS naturally subsumes dependent types
and higher-order subtyping, which enables a number of advanced language features for extensi-
bility, genericity, and efficiency that include virtual types, recursive types, deep mixin compo-
sition, feature-oriented programming, bounded quantification, and partial evaluation [3, 8, 2].

In the original work on PSS, Hutchins introduces a declarative system with two relations,
one for equivalence (akin to β-equivalence) and the other for subtyping, both of which are
closed by transitivity. Type safety states a type preservation property that prescribes that the
type of a program must be preserved by the evaluation of the program. Type preservation
hinges on an inversion lemma that states that any two functions in the subtyping relation
must take operands of equivalent subtypes. This inversion lemma cannot be proven directly
when the subtyping derivation relating the two functions contains transitive steps, because of
the intermediary terms that may not be structurally related to the two functions, and type
preservation amounts to showing that transitivity is admissible in the declarative system.

In order to prove transitivity elimination, Hutchins proposes an equivalent syntax-directed,
algorithmic system with two different notions of reduction: an equivalence reduction that models
β-reduction, and a subtyping reduction that models small-step subtyping, where subtyping
reduction subsumes equivalence reduction. For short, we may write “reduction” for the β-
reduction, and “promotion” for the subtyping reduction proper that goes beyond β-reduction.
The declarative subtyping relation is shown to be equivalent to the combination of subtyping
and equivalence reduction sequences as depicted below.

u ≤ t iff exists v such that
t v

u

≡

≤

In the algorithmic setting, transitivity can be shown to be admissible if these two notions
of reduction commute. Diagrammatically, commutativity ensures that a transitive derivation
comprising a “stair” with several steps as the “angle” above can be flattened into a single angle.

Despite his efforts, Hutchins failed to show that commutativity holds in his algorithmic
system, which prevented him from proving transitivity elimination and type safety. The culprit
of this failure is exemplified by a very elementary case (depicted below), which involves the
reduction of a redex and the promotion of the formal parameter in the redex’s abstraction to
its annotation.

(λx≤ t.t) v t

(λx≤ t.x) v v

≡

≤
≡

?

The redex (λx≤ t.x)v on the bottom-left corner of the diagram is reduced (in the horizontal)
to v, and promoted (in the vertical) to (λx≤ t.t)v. Under the assumption of well-formedness,
v ≤∗ t holds in the declarative system, but that judgement may entail transitive steps, which
become a path in the shape of a stair when translated to the algorithmic system, and the right
edge of the diagram cannot be completed with elementary subtyping reduction, thus preventing
a direct proof of the diamond property.

To tackle this problem, Hutchins resorted to simultaneous reduction and to the decreasing
diagrams technique of [6], with the aim of proving weak commutativity (a result weaker than
the diamond property, but still enough to prove transitivity elimination). But he failed to assign

36

Towards the type safety of Pure Subtype Systems V. Pasquale and A. Garćıa-Pérez

depths to each reduction step so as to show that reduction decreases in the way prescribed by
the decreasing diagrams technique, because β-reduction increases this depth. Hutchins himself
explains this failure in detail in his PhD thesis (Section 2.7: Confluence and commutativity)[2].

We reformulate the PSS theory by providing an alternative version of the system with
similar expressive power but with a more fine-grained notion of subtyping, in which we can now
prove the commutativity conjecture assumed in Hutchins’ works. Our version of PSS, which
we dub Machine-Based PSS (MPSS for short), uses a continuation stack reminiscent of the
Krivine Abstract Machine (KAM) [4, 1] to keep track of arguments that have been passed to
abstractions, which enables a direct proof of Hutchins’ conjecture on commutativity. Indeed,
thanks to the stack that keeps track of arguments that have been passed at a given scope, the
subtyping relation in our MPSS exposes some intermediary terms that are absent in Hutchins’
formulation. These intermediary terms allow us to complete a direct proof of commutativity
without the decreasing diagrams technique.

References

[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional correspondence between
evaluators and abstract machines. In Proceedings of International Conference on Principles and
Practice of Declarative Programming, pages 8–19, 2003.

[2] DeLesley Hutchins. Pure subtype systems: A type theory for extensible software. 2009.

[3] DeLesley S. Hutchins. Pure subtype systems. In Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’10, page 287–298. Associa-
tion for Computing Machinery, 2010.

[4] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation,
20(3):199–207, 2007.

[5] Benjamin Pierce and Martin Steffen. Higher-order subtyping. Theoretical computer science, 176(1-
2):235–282, 1997.

[6] Vincent Van Oostrom. Confluence by decreasing diagrams. Theoretical computer science,
126(2):259–280, 1994.

[7] Philip Wadler. The expression problem, 1998. Posted to Java Genericity internet mailing list.

[8] Matthias Zenger and Martin Odersky. Independently extensible solutions to the expression problem.
In Workshop on Foundations of Object-Oriented Languages, 2005.

37

